How can I find the sum of the following series?
$ S_n = \frac{1}{2 \times 3 \times 4} + \frac{1}{5 \times 6 \times 7} + ...+ \frac{1}{(3n-1) \times 3n \times (3n+1)} $
How can I find the sum of the following series?
$ S_n = \frac{1}{2 \times 3 \times 4} + \frac{1}{5 \times 6 \times 7} + ...+ \frac{1}{(3n-1) \times 3n \times (3n+1)} $
I'm not sure if there exists an answer for the sum of the first few terms, but for the infinite sum there is an answer. I thought the "series" in your question meant an infinite sum, like here, so sorry if this does not answer your question.
Note $$-\ln(1-x)=x+\frac{x^2}{2}+\frac{x^3}{3}+\cdots$$ Thus $$\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\cdots=-\ln(1- x)-x$$ Putting $x= \exp\left(\frac{2\pi}{3}\right)$, $x= \exp\left(\frac{4\pi}{3}\right)$, and summing the results, we get $$-\frac{1}{2}+\frac{2}{3}-\frac{1}{4}+\cdots=-\ln\left(\left(1-\exp\left(\frac{2\pi}{3}\right) \right)\left(1-\exp\left(\frac{4\pi}{3}\right) \right)\right)+1\tag{*}$$
To calculate $(*)$, note $\left(x-\exp\left(\frac{2\pi}{3}\right) \right)\left(x-\exp\left(\frac{4\pi}{3}\right)\right)=x^2+x+1$, and put $x=1$.
Multiplying by $-1$ and dividing by $2$, we get that the desired sum $S_n$ is equal to $\dfrac{\ln3 -1}{2}$.
I used Maple to get $$ \sum _{k=1}^{n}{\frac {1}{ \left( 3\,k-1 \right) (3k) \left( 3\,k+1 \right) }}=\frac16\,\psi \left( n+\frac23 \right) -\frac13\,\psi \left( n+1 \right) +\frac16\,\psi \left( n+\frac43 \right) +\frac12\,\ln \left( 3 \right) - \frac12 $$ Here $\psi$ is the digamma function $\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$
Use partial fractions. This decomposes into a collection of harmonic sums, which you can combine/simplify.
As said in comments and answers, using partial fraction decomposition and harmonic numbers $$S_n=\frac{1}{6}H_{n-\frac{1}{3}}-\frac{1}{3}H_n+\frac{1}{6}H_{n+\frac{1}{3}}+ \frac{\log (3)-1}{2}$$ Uing asymptotics $$S_n=\frac{\log (3)-1}{2}-\frac{1}{54 n^2}+\frac{1}{54 n^3}+O\left(\frac{1}{n^4}\right)$$ Use your pocket calculator for $n=5$; the exact result is $$S_5=\frac{14039}{288288}\approx 0.048698$$ while the above truncated expansion gives $$\frac{\log (3)}{2}-\frac{3379}{6750}\approx 0.048713$$