Consider the function $f$ defined by $$f(x)=\int_0^{2\pi}\ln\left(x^2-2x\cos t+1\right) \,dt.$$
I tried calculating values of this function using Wolfram Alpha and I observed that $f(x)=0$ for all $x\in[-1,1]$. How can we prove this fact?
Consider the function $f$ defined by $$f(x)=\int_0^{2\pi}\ln\left(x^2-2x\cos t+1\right) \,dt.$$
I tried calculating values of this function using Wolfram Alpha and I observed that $f(x)=0$ for all $x\in[-1,1]$. How can we prove this fact?