0

Find all integers $n$ such that $7 \mid (5^n +1).$

From flt, $5^6\equiv 1 \pmod 7.$ but how to proceed from here?

1 Answers1

0

I: For minus sign

$5^n-1={5^3}^{(\frac{n}{3})}-1$

$={(126-1)}^{(\frac{n}{3})}-1$

$={(7*18-1)}^{(\frac{n}{3})}-1$

$={(-1)}^{(\frac{n}{3})}-1$

For it to be zero, $\frac{n}{3}$=even i.e. 2k

so n should be of the form 6k

II: With a plus sign

$5^n+1={5^3}^{(\frac{n}{3})}+1$

$={(126-1)}^{(\frac{n}{3})}+1$

$={(7*18-1)}^{(\frac{n}{3})}+1$

$={(-1)}^{(\frac{n}{3})}+1$

With a plus sign for it to be zero $\frac{n}{3}$= odd i.e. 2k-1

so n should be of the form n=3(2k-1)