Find all integers $n$ such that $7 \mid (5^n +1).$
From flt, $5^6\equiv 1 \pmod 7.$ but how to proceed from here?
Find all integers $n$ such that $7 \mid (5^n +1).$
From flt, $5^6\equiv 1 \pmod 7.$ but how to proceed from here?
I: For minus sign
$5^n-1={5^3}^{(\frac{n}{3})}-1$
$={(126-1)}^{(\frac{n}{3})}-1$
$={(7*18-1)}^{(\frac{n}{3})}-1$
$={(-1)}^{(\frac{n}{3})}-1$
For it to be zero, $\frac{n}{3}$=even i.e. 2k
so n should be of the form 6k
II: With a plus sign
$5^n+1={5^3}^{(\frac{n}{3})}+1$
$={(126-1)}^{(\frac{n}{3})}+1$
$={(7*18-1)}^{(\frac{n}{3})}+1$
$={(-1)}^{(\frac{n}{3})}+1$
With a plus sign for it to be zero $\frac{n}{3}$= odd i.e. 2k-1
so n should be of the form n=3(2k-1)