Here a way to it.
(At the moment I must leave, so do not have the opportunity to work it out myself)
First let us solve the analogous question where it concerns $7$ enveloppes
and $14$ letters and where we must find the probability that $0$
of the $7$ enveloppes will contain both the letters which they should
contain.
Number the envelopes with $1,2,\dots,7$ and let $E_{i}$ denote the
event that the $i$-th envelop contains the letters which it should
contain.
Then to be found is $P\left(E_{1}^{\complement}\cap\cdots\cap E_{7}^{\complement}\right)=1-P\left(E_{1}\cup\cdots\cup E_{7}\right)$
and for term $P\left(E_{1}\cup\cdots\cup E_{7}\right)$ we can use
inclusion/exclusion and symmetry.
Now in the original problem number the envelopes with $1,2,\dots,10$
and to avoid confusion let here $A_{i}$ denote the event that the
$i$-th envelop contains the letters which it should contain.
Then the probability on exactly $3$ envelopes that contain the correct
letters can be expressed as:
$$\binom{10}{3}P\left(A_{1}^{\complement}\cap\cdots\cap A_{7}^{\complement}\cap A_{8}\cap A_{9}\cap A_{10}\right)=$$$$\binom{10}{3}P\left(A_{1}^{\complement}\cap\cdots\cap A_{7}^{\complement}\mid A_{8}\cap A_{9}\cap A_{10}\right)P\left(A_{8}\cap A_{9}\cap A_{10}\right)$$
Here: $$P\left(A_{8}\cap A_{9}\cap A_{10}\right)=P\left(A_{10}\right)P\left(A_{9}\mid A_{10}\right)P\left(A_{8}\mid A_{9}\cap A_{10}\right)$$
which is not difficult to find, and: $$P\left(A_{1}^{\complement}\cap\cdots\cap A_{7}^{\complement}\mid A_{8}\cap A_{9}\cap A_{10}\right)=P\left(E_{1}\cup\cdots\cup E_{7}\right)$$
where the RHS is found above.
Edit:
Let us choose for a more general approach: $n$ envelopes and $nm$ letters.
Let $X_{n}$ denote the number of
envelopes containing the $m$ letters that they should contain.
Our aim is to find an expression for $P\left(X_{n}=k\right)$.
Five the letters the numbers $1,2,\dots,n$ and let $A_i^{(n)}$ denote the event that the $i$-th letter contains the letters that it should contain.
In what follows now $A_i^{(n)}$ is abbreviated as $A_i$.
$\begin{aligned}P\left(X_{n}=k\right) & =\binom{n}{k}P\left(A_{1}\cap\cdots\cap A_{k}\cap A_{k+1}^{\complement}\cap\cdots\cap A_{n}^{\complement}\right)\\
& =\binom{n}{k}P\left(A_{1}\cap\cdots\cap A_{k}\right)P\left(A_{k+1}^{\complement}\cap\cdots\cap A_{n}^{\complement}\mid A_{1}\cap\cdots\cap A_{k}\right)\\
& =\binom{n}{k}P\left(A_{1}\cap\cdots\cap A_{k}\right)P\left(X_{n-k}=0\right)
\end{aligned}
$
Here:
$\begin{aligned}P\left(A_{1}\cap\cdots\cap A_{k}\right) & =P\left(A_{1}\right)P\left(A_{2}\mid A_{1}\right)P\left(A_{3}\mid A_{1}\cap A_{2}\right)\cdots P\left(A_{k}\mid A_{1}\cap\cdots\cap A_{k-1}\right)\\
& =\left[\frac{m}{nm}\frac{m-1}{nm-1}\cdots\frac{1}{nm-m+1}\right]\left[\frac{m}{nm-m}\frac{m-1}{nm-m-1}\cdots\frac{1}{nm-2m+1}\right]\left[\frac{m}{nm-2m}\frac{m-1}{nm-2m-1}\cdots\frac{1}{nm-3m+1}\right]\cdots\left[\frac{m}{nm-km+m}\frac{m-1}{nm-km+m-1}\cdots\frac{1}{nm-km+1}\right]\\
& =\frac{\left(nm-km\right)!\left(m!\right)^{k}}{\left(nm\right)!}
\end{aligned}
$
In order to find $P(X_{n-k}=0)$ we now look at the situation where $n$ has changed into $n-k$.
The events $A_1^{(n-k)},\dots,A_{n-k}^{(n-k)}$ are abbreviated as $E_1,\dots,E_{n-k}$ and applying inclusion/exclusion and symmetry we find:
$\begin{aligned}P\left(X_{n-k}=0\right) & =P\left(E_{1}^{\complement}\cap\cdots\cap E_{n-k}^{\complement}\right)\\
& =1-P\left(E_{1}\cup\cdots\cup E_{n-k}\right)\\
& =\sum_{i=0}^{n-k}\binom{n-k}{i}\left(-1\right)^{i}P\left(E_{1}\cap\cdots\cap E_{i}\right)\\
& =\sum_{i=0}^{n-k}\binom{n-k}{i}\left(-1\right)^{i}P\left(E_{1}\cap\cdots\cap E_{i}\right)\\
& =\sum_{i=0}^{n-k}\binom{n-k}{i}\left(-1\right)^{i}\frac{\left(nm-km-im\right)!\left(m!\right)^{i}}{\left(nm-km\right)!}
\end{aligned}
$
Combining the results we find as final result:
$$P\left(X_{n}=k\right)=\frac{1}{\left(nm\right)!}\binom{n}{k}\sum_{i=0}^{n-k}\binom{n-k}{i}\left(-1\right)^{i}\left(nm-km-im\right)!\left(m!\right)^{k+i}$$
The special case where $n=10$, $m=2$ and $k=3$ gives probability:
$$\frac{1}{20!}\binom{10}{3}\sum_{i=0}^{7}\binom{7}{i}\left(-1\right)^{i}\left(14-2i\right)!2^{3+i}$$
This agrees with the answer of @jeea.