If you use the tangent half-angle substitution $\theta=2 \tan ^{-1}(t)$, the expression write
$$\frac{t^4-4 t^3-1}{t(1+t)(1-t)}=0$$ Assuming that the denominator cannot cancel, the real solutions of $t^4-4 t^3-1=0$ are given by
$$t_\pm=1+\frac{1}{\sqrt{2}}\pm\sqrt{\frac{1}{2} \left(5+4 \sqrt{2}\right)}$$ which makes the solution to be
$$\theta_\pm=2 \tan^{-1}\left(1+\frac{1}{\sqrt{2}}\pm\sqrt{\frac{1}{2} \left(5+4 \sqrt{2}\right)} \right)+n \pi$$ and I do not think that we could do more.
We can do some amazing things considering that it is the same as finding the zero's of
$$f(x)=\sin (x) \cos (x) (\csc (x)+\sec (x)-1)=\sin (x)+\cos (x)-\sin (x) \cos (x)$$ The first positive root is close to $\frac {5\pi}6$. Then, using Taylor series
$$f(x)=\left(\frac{1}{2}-\frac{\sqrt{3}}{4}\right)-\left(1+\frac{\sqrt{3}}{2}\right)
\left(x-\frac{5 \pi }{6}\right)-\left(\frac{1}{4}+\frac{\sqrt{3}}{4}\right)
\left(x-\frac{5 \pi }{6}\right)^2+\frac{1}{12} \left(5+\sqrt{3}\right)
\left(x-\frac{5 \pi }{6}\right)^3+O\left(\left(x-\frac{5 \pi }{6}\right)^4\right)$$
Now, using series reversion
$$x_+=\frac{5 \pi }{6}+\left(2 \sqrt{3}-4\right) \left(y-\frac{1}{4}
\left(2-\sqrt{3}\right)\right)+\left(38-22 \sqrt{3}\right) \left(y-\frac{1}{4}
\left(2-\sqrt{3}\right)\right)^2+\left(692 \sqrt{3}-\frac{3596}{3}\right)
\left(y-\frac{1}{4} \left(2-\sqrt{3}\right)\right)^3+O\left(\left(y-\frac{1}{4}
\left(2-\sqrt{3}\right)\right)^4\right)$$ where $y$ stands for $f(x)$. Making $y=0$ leads to
$$x_+=\frac{5 \pi }{6}+\frac{48487-27993 \sqrt{3}}{48}\approx 2.6534469$$ while the exact solution, obtained using Newton method, is $2.6534459$
The first neagtive root is close to $-\frac \pi 3$. Doing the same
$$f(x)=\left(\frac{1}{2}-\frac{\sqrt{3}}{4}\right)+\left(1+\frac{\sqrt{3}}{2}\right)
\left(x+\frac{\pi }{3}\right)-\left(\frac{1}{4}+\frac{\sqrt{3}}{4}\right)
\left(x+\frac{\pi }{3}\right)^2-\left(\frac{5}{12}+\frac{1}{4 \sqrt{3}}\right)
\left(x+\frac{\pi }{3}\right)^3+O\left(\left(x+\frac{\pi }{3}\right)^4\right)$$
$$x_-=-\frac{\pi }{3}+\left(4-2 \sqrt{3}\right) \left(y-\frac{1}{4}
\left(2-\sqrt{3}\right)\right)+\left(22 \sqrt{3}-38\right) \left(y-\frac{1}{4}
\left(2-\sqrt{3}\right)\right)^2+\left(\frac{3596}{3}-692 \sqrt{3}\right)
\left(y-\frac{1}{4} \left(2-\sqrt{3}\right)\right)^3+O\left(\left(y-\frac{1}{4}
\left(2-\sqrt{3}\right)\right)^4\right)$$ Making $y=0$ leads to
$$x_-=-\frac \pi 3-\frac{48487-27993\sqrt{3}}{48}\approx -1.0826505 $$while the exact solution, obtained using Newton method, is $-1.0826495$.