0

Question:

We need to prove the following inequality :-

$$\displaystyle \sum_{cyclic} \frac{x^4}{8x^3 + 5y^3} \geq \frac{x+y+z}{13} \ \ \ \ \ \ \ \ \ \ \ x,y,z \in \mathbb{R}^+ $$

As we know by AM-GM that,

$$\displaystyle \frac{x+y+z}{13} \geq \frac{3(xyz)^\frac{1}{3} }{13} $$ Can we say it is similar to prove this

$$\displaystyle \sum_{cyclic} \frac{x^4}{8x^3 + 5y^3} \geq \frac{3(xyz)^\frac{1}{3} }{13}$$

instead of the original equation.

Because then,

SOLUTION

$\displaystyle \sum_{cyclic} \frac{x^4}{8x^3 + 5y^3} \geq \frac{x+y+z}{13} \geq \frac{3(xyz)^\frac{1}{3} }{13}$

So We can say $$\displaystyle \ \ \ \sum_{cyclic} \frac{x^4}{8x^3 + 5y^3} \times 13(x^3 + y^3 +z^3) \geq (x^2 + y^2 + z^2)^2 \ \ \ \ $$

By Cauchy-Schwarz Inequality more precisely Titu's Lemma

Also we can see that $\displaystyle \ \ (x^2 + y^2 + z^2)^2 \geq 9(xyz)^\frac{4}{3} $

This will result in

$$\displaystyle \sum_{cyclic} (\frac{x^4}{8x^3 + 5y^3}) \times (x^3 + y^3 + z^3) \geq 3(xyz) \frac{3(xyz)^\frac{1}{3} }{13}$$

Now we can tell $\displaystyle {(x^3 + y^3 + z^3)} \geq {3(xyz)} \ \ \ $ (always true) i.e it is equivalent to say that $\displaystyle \sum_{cyclic} (\frac{x^4}{8x^3 + 5y^3}) \geq \frac{3(xyz)^\frac{1}{3} }{13} .$

Am I correct ?

0 Answers0