Question:
We need to prove the following inequality :-
$$\displaystyle \sum_{cyclic} \frac{x^4}{8x^3 + 5y^3} \geq \frac{x+y+z}{13} \ \ \ \ \ \ \ \ \ \ \ x,y,z \in \mathbb{R}^+ $$
As we know by AM-GM that,
$$\displaystyle \frac{x+y+z}{13} \geq \frac{3(xyz)^\frac{1}{3} }{13} $$ Can we say it is similar to prove this
$$\displaystyle \sum_{cyclic} \frac{x^4}{8x^3 + 5y^3} \geq \frac{3(xyz)^\frac{1}{3} }{13}$$
instead of the original equation.
Because then,
SOLUTION
$\displaystyle \sum_{cyclic} \frac{x^4}{8x^3 + 5y^3} \geq \frac{x+y+z}{13} \geq \frac{3(xyz)^\frac{1}{3} }{13}$
So We can say $$\displaystyle \ \ \ \sum_{cyclic} \frac{x^4}{8x^3 + 5y^3} \times 13(x^3 + y^3 +z^3) \geq (x^2 + y^2 + z^2)^2 \ \ \ \ $$
By Cauchy-Schwarz Inequality more precisely Titu's Lemma
Also we can see that $\displaystyle \ \ (x^2 + y^2 + z^2)^2 \geq 9(xyz)^\frac{4}{3} $
This will result in
$$\displaystyle \sum_{cyclic} (\frac{x^4}{8x^3 + 5y^3}) \times (x^3 + y^3 + z^3) \geq 3(xyz) \frac{3(xyz)^\frac{1}{3} }{13}$$
Now we can tell $\displaystyle {(x^3 + y^3 + z^3)} \geq {3(xyz)} \ \ \ $ (always true) i.e it is equivalent to say that $\displaystyle \sum_{cyclic} (\frac{x^4}{8x^3 + 5y^3}) \geq \frac{3(xyz)^\frac{1}{3} }{13} .$
Am I correct ?
: https://brilliant.org/discussions/thread/olympiad-inequality/ – Nikola Alfredi Mar 09 '20 at 18:55