Consider some $n \times n$ matrix $\mathbb{M}$ which is diagonalizable with $n$ distinct eigenvalues $\{ \lambda_{j} \}_{j=1}^{n}$. Suppose that the matrix is not symmetric, and consider the corresponding right eigenvectors $\{ \mathbf{r}_{j} \}_{j=1}^{n}$ and left eigenvectors $\{ \boldsymbol{\ell}_{j} \}_{j=1}^{n}$ which satisfy the relations $$ \mathbb{M} \mathbf{r}_{j} = \lambda_{j} \mathbf{r}_{j} \ ,\\ \boldsymbol{\ell}_{j}^{T} \mathbb{M} = \boldsymbol{\ell}_{j}^{T} \lambda_{j} \ . $$ If you construct the matrices $$ \mathbb{R} := \left[ \begin{matrix} \mathbf{r}_{1} & \cdots & \mathbf{r}_{n} \end{matrix} \right] \quad \quad \mathrm{and} \quad \quad \mathbb{L} := \left[ \begin{matrix} \boldsymbol{\ell}_{1}^{T} \\ \vdots \\ \boldsymbol{\ell}_{n}^{T} \end{matrix} \right] \ , $$ then this question seems to suggest that $\mathbb{R}$ and $\mathbb{L}$ are inverses of each other.
How do you prove the statement $\mathbb{L} \mathbb{R} = \mathbb{I}$? I am unable to make progress with this claim although it seems true.