Define: $f_a(x)=\frac{a}{\sqrt \pi} \frac{1}{a^2+x^2}$. Prove that $$f_a *f_b=f_{a+b}$$
My Approach
$$(f_a *f_b)(x)=\int_{-\infty}^{\infty}\frac{ab}{\pi}\frac{a}{a^2+y^2} \frac{b}{(x-y)^2+b^2}\,\mathrm dy$$
Define: $f_a(x)=\frac{a}{\sqrt \pi} \frac{1}{a^2+x^2}$. Prove that $$f_a *f_b=f_{a+b}$$
My Approach
$$(f_a *f_b)(x)=\int_{-\infty}^{\infty}\frac{ab}{\pi}\frac{a}{a^2+y^2} \frac{b}{(x-y)^2+b^2}\,\mathrm dy$$
The problem is a little exercise on the Fourier transform. But there seems to be a little misprint in the formulation.
So let $f_a$ be $$ f_a(x) = \frac{a}{\pi}\frac{1}{a^2+x^2}. $$ I claim that $f_a * f_b = f_{a+b}$ for all $a,b>0$. To prove this I will use two facts.
First: the Fourier transform of $f_a(x)$, $a>0$, is $$ \mathcal{F}_{x \to \xi}[f_a(x)] = \frac{a}{\pi} \int e^{-ix\xi}\biggl[\frac{1}{a^2+x^2}\biggr]\,dx = e^{-a|\xi|}. $$ (See the computation here.)
Second: for the convolution of two functions $f(x)$, $g(x)$, we have $$ \mathcal{F}[f * g] = \mathcal{F}[f] \, \mathcal{F}[g]. $$
Now $$ f_a * f_b = \mathcal{F}^{-1}_{\xi\to x} \, \mathcal{F}_{x\to\xi}[f_a * f_b] = \mathcal{F}^{-1}_{\xi\to x}\Bigl[e^{-a|\xi|}\, e^{-b|\xi|}\Bigr] = \mathcal{F}^{-1}_{\xi\to x}\Bigl[e^{-(a+b)|\xi|} \Bigr] = \frac{1}{2\pi} \int e^{i x\xi}\,e^{-(a+b)|\xi|}\,d\xi = \frac{a+b}{\pi} \, \frac{1}{(a+b)^2+x^2} = f_{a+b}(x), $$ as desired.