$1 \equiv a^{170}=a^{111}a^{59}\equiv 1*a^{59}\equiv a^{59}\pmod n$.
And $1 \equiv a^{111}= a^{59}a^{52}\equiv 1a^{52}\equiv a^{52}\pmod n$ and .... keep going....
This is akin to using Euclid's algarithm to show $\gcd(111,170) = 1$.
....
$1 \equiv a^{59} = a^{52}a^{7}\equiv 1*a^7\equiv a^7\pmod n$.
$1 \equiv a^{52}\equiv (a^7)^7a^3 \equiv 1^7a^3\equiv a^3 \pmod n$
$1 \equiv a^7 \equiv (a^3)^2*a \equiv 1^2a \equiv a \pmod n$.
That's that.
Alternatively we can use EA and Bezouts lemma to show that
$1 = 7- 2*3 = 7- 2(52- 7*7)$
$= 15*7 - 2*52 = 15*(59-52)- 2*52 = 15*59 - 17*52=$
$=15*59- 17(111-59) = 32*59 - 17*111 =$
$ 32*(170-111) - 17*111=32*170 - 49*111$
So $5440 = 32*170$ and $5540= 5439+1 = 49*111 + 1$.
And so....
So $a^{5440}=(a^{170})^{32} \equiv 1^{32} \equiv 1 \pmod n$.
But also $a^{5440}= a*a^{5439}=a*(a^{111})^{49}\equiv a*1^{49}\equiv a \pmod n$.
So transitively, $a\equiv a^{5440}\equiv 1 \pmod{n}$.