1

What is the formula of:

$$a^{0} + a^{1} + a^{2} + ... + a^{n-1} + a^{n}$$

Any ideas?

kamaci
  • 107

4 Answers4

3

Hint: For $a=1$ this is simple. Otherwise, what happens when you multiply it by $a-1$?

Cameron Buie
  • 102,994
2

See

http://en.wikipedia.org/wiki/Geometric_series

it is called a gemoetric series and it is a standard result.

Lost1
  • 7,895
1

If $a=1,a^{0} + a^{1} + a^{2} + ... + a^{n-1} + a^{n}=1+1+\cdots$ up to $(n+1)$ terms hence $=n+1$

Else let $S=a^{0} + a^{1} + a^{2} + ... + a^{n-1} + a^{n}$

So, $a\cdot S=a^{1} + a^{2} + a^{3} + ... + a^{n} + a^{n+1}$

So, $S(a-1)=a^{n+1}-1$

1

$$a^{n}-1=(a-1)(a^{n-1}+\cdots+1)\implies a^{n-1}+\cdots+1=\dfrac{a^{n}-1}{a-1}$$ where $a \neq 1$

Inceptio
  • 7,881