What is the formula of:
$$a^{0} + a^{1} + a^{2} + ... + a^{n-1} + a^{n}$$
Any ideas?
What is the formula of:
$$a^{0} + a^{1} + a^{2} + ... + a^{n-1} + a^{n}$$
Any ideas?
Hint: For $a=1$ this is simple. Otherwise, what happens when you multiply it by $a-1$?
See
http://en.wikipedia.org/wiki/Geometric_series
it is called a gemoetric series and it is a standard result.
If $a=1,a^{0} + a^{1} + a^{2} + ... + a^{n-1} + a^{n}=1+1+\cdots$ up to $(n+1)$ terms hence $=n+1$
Else let $S=a^{0} + a^{1} + a^{2} + ... + a^{n-1} + a^{n}$
So, $a\cdot S=a^{1} + a^{2} + a^{3} + ... + a^{n} + a^{n+1}$
So, $S(a-1)=a^{n+1}-1$
$$a^{n}-1=(a-1)(a^{n-1}+\cdots+1)\implies a^{n-1}+\cdots+1=\dfrac{a^{n}-1}{a-1}$$ where $a \neq 1$