Using differentiation under integral sign, find the value of $\int_{0}^{1} \dfrac {x^{\alpha } + x^{-\alpha} -2}{(1-x) \ln(x)} dx$
EDIT:My Attempt after P. Lawrence's comment:
The given integral is : $\int_{0}^{1} \dfrac {x^{\alpha } + x^{-\alpha} -2}{(1-x) \ln(x)} dx$. Here , $\alpha $ is the parameter so we let: $$F(\alpha )=\int_{0}^{1} \dfrac {x^{\alpha } + x^{-\alpha} -2}{(1-x) \ln(x)} dx$$ Differentiating both sides wrt $\alpha $ $$\dfrac {dF(\alpha )}{d\alpha }=\dfrac {d}{d\alpha} \int_{0}^{1} \dfrac {x^{\alpha } + x^{-\alpha} -2}{(1-x) \ln(x)} dx$$ By Leibnitz Theorem: $$\dfrac {dF(\alpha) }{d\alpha} = \int_{0}^{1} \dfrac {x^{\alpha}\ln(x)-x^{-\alpha}\ln(x)}{(1-x)\ln(x)} dx$$ $$\dfrac {dF(\alpha )}{d\alpha }=\int_{0}^{1} \dfrac {x^{\alpha} - x^{-\alpha}}{1-x} dx$$