Suppose we are going to evaluate:
$$\sum _{k=1}^{n}\binom{n}{k}\frac{1}{k}$$
Using Pascal's rule we have:
$$\sum _{k=1}^{n}\binom{n}{k}\frac{1}{k}=\sum _{k=1}^{n}\binom{n-1}{k-1}\frac{1}{k}+\underbrace{\sum _{k=1}^{n}\binom{n-1}{k}\frac{1}{k}}_{(1)}$$$$=\sum _{k=1}^{n}\binom{n-1}{k-1}\frac{1}{k}+\underbrace{\sum _{k=1}^{n}\binom{n-2}{k-1}\frac{1}{k}+\sum _{k=1}^{n}\binom{n-2}{k}\frac{1}{k}}_{(1)}$$$$=\sum _{k=1}^{n}\binom{n-1}{k-1}\frac{1}{k}+\sum _{k=1}^{n}\binom{n-2}{k-1}\frac{1}{k}+\sum _{k=1}^{n}\binom{n-3}{k-1}\frac{1}{k}+\sum _{k=1}^{n}\binom{n-3}{k}\frac{1}{k}$$ On the other hand: $$\sum _{k=1}^{n}\binom{n-r}{k-1}\frac{1}{k}=\frac{1}{n-r+1}\sum _{k=1}^{n}\binom{n-r+1}{k}$$$$=\frac{1}{n-r+1}\left[\color{red}{\sum _{k=0}^{n-r+1}\binom{n-r+1}{k}}+\sum _{k=n-r+2}^{n}\binom{n-r+1}{k}-1\right]$$$$=\frac{\color{red}{2^{n-r+1}}-1}{n-r+1}\tag{I}$$
Continuing this way:$$\sum _{k=1}^{n}\binom{n}{k}\frac{1}{k}=\sum _{k=1}^{n}\binom{n-1}{k-1}\frac{1}{k}+\sum _{k=1}^{n}\binom{n-2}{k-1}\frac{1}{k}+...+\sum _{k=1}^{n}\binom{n-(n-1)}{k-1}\frac{1}{k}+\color{blue}{\sum _{k=1}^{n}\binom{n-(n-1)}{k}\frac{1}{k}}$$
Using (I) implies:
$$=\sum_{k=0}^{n-2}\frac{2^{\left(n-k\right)}-1}{n-k}+\color{blue}{1}$$
Hence: $$\bbox[5px,border:2px solid #00A000]{\sum _{k=1}^{n}\binom{n}{k}\frac{1}{k}=\sum_{k=0}^{n-2}\frac{2^{\left(n-k\right)}-1}{n-k}+\color{blue}{1}}$$
My questions:
1) Is there any elementary way to find a closed form for this expression?
2) Can my last relation be considered as a closed form?
3) Is the last relation new or it has been done before?