-1

I've seen this in a lot of proofs for number theory-based problems, but I can't see where they are getting it from.

If $r^{\operatorname{ord}(r)} = 1\pmod{p}$ then $r^{\operatorname{ord}(r)}= 1\pmod{p^2}$.

thanks

EDIT:

Should have been, if $r^{\operatorname{ord}(r)} = 1\pmod{p^2}$, then $r^{\operatorname{ord}(r)} = 1\pmod{p}$

I came across this when looking at this: https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Book%3A_Elementary_Number_Theory_(Raji)/05%3A_Primitive_Roots_and_Quadratic_Residues/5.03%3A_The_Existence_of_Primitive_Roots#:~:text=Let%20p%20be%20an%20odd,p%E2%88%921%E2%88%921).

Bill Dubuque
  • 272,048

1 Answers1

1

$r^d\equiv1\bmod p^2$ means $p^2|r^d-1$;

since $p|p^2$, this means $p|r^d-1$, so $r^d\equiv1\bmod p$.

J. W. Tanner
  • 60,406