I have a function $$ g_N(x) =\frac{1}{x}+ \sum_{n=1}^\infty \Big(\frac{1}{x+n}+\frac{1}{x-n}\Big) $$ How can I prove that $$g_N(\frac{x}{2})+g_N(\frac{x+1}{2}) = 2g_N(x)\;?$$
2 Answers
Using $(7)$ from this answer, we get $$ g_N(x)=\pi\cot(\pi x) $$ Therefore, we have $$ \begin{align} g_N\left(\frac{x}{2}\right)+g_N\left(\frac{x+1}{2}\right) &=\pi\cot\left(\pi\frac{x}{2}\right)+\pi\cot\left(\pi\frac{x+1}{2}\right)\\ &=\pi\cot\left(\pi\frac{x}{2}\right)-\pi\tan\left(\pi\frac{x}{2}\right)\\ &=2\pi\frac{1-\tan^2\left(\pi\frac{x}{2}\right)}{2\tan\left(\pi\frac{x}{2}\right)}\\ &=2\pi\cot(\pi x)\\[15pt] &=2g_N(x) \end{align} $$
$$g_N(\frac{x}{2}) =\frac{2}{x}+ \sum_{n=1}^\infty \Big(\frac{2}{x+2n}+\frac{2}{x-2n}\Big)$$ $$g_N(\frac{x+1}{2}) =\frac{2}{x+1}+ \sum_{n=1}^\infty \Big(\frac{2}{x+2n+1}+\frac{2}{x-2n+1}\Big)$$
Adding them together you get
$$g_N(\frac{x}{2})+g_N(\frac{x+1}{2})=\frac{2}{x}+\frac{2}{x+1}+\sum_{n=1}^\infty \Big(\frac{2}{x+2n}+\frac{2}{x-2n}\Big)+\sum_{n=1}^\infty \Big(\frac{2}{x+2n+1}+\frac{2}{x-2n+1}\Big)$$
$$=\frac{2}{x}+\frac{2}{x+1}+\sum_{n=1}^\infty \Big(\frac{2}{x+2n}+\frac{2}{x-2n}\Big)+\sum_{n=1}^\infty \Big(\frac{2}{x+2n+1}\Big)+\Big( \sum_{n=1}^\infty \frac{2}{x-2n+1}\Big)$$ $$=\frac{2}{x}+\frac{2}{x+1}+\sum_{n=1, even}^\infty \Big(\frac{2}{x+n}+\frac{2}{x-n}\Big)+\sum_{n=3, odd}^\infty \Big(\frac{2}{x+n}\Big)+\Big( \sum_{n=1, odd}^\infty \frac{2}{x-n}\Big)$$
Group $\frac{2}{x+1}$ with the second sum and you are done.
P.S. Just be careful, the series are not absolutely convergent, so to do the actual computations you need to work with partial sums. The partial sums on left and right have different "end points".

- 132,525
But, it seems like the right hand side should be something like $2g_{2N+1}(x)$, so could you double check the problem statement?
– Alex R. Apr 09 '13 at 23:22