Extending this answer, we get
$$
\sum_{k=1}^n\frac{1}{k^z}=\zeta(z)+\frac{1}{1-z}n^{1-z}+\frac12n^{-z}-\frac{z}{12}n^{-1-z}+O\left(n^{-3-z}\right)\tag1
$$
Integrating a Riemann-Stieltjes Integral by parts, we get
$$
\begin{align}
\sum_{k=1}^n\frac1{k^z}
&=\int_{1^-}^{n^+}\frac1{x^z}\,\mathrm{d}\lfloor x\rfloor\tag2\\
&=\int_1^n\frac1{x^z}\,\mathrm{d}x-\int_{1^-}^{n^+}\frac1{x^z}\,\mathrm{d}\!\left(\{x\}-\tfrac12\right)\tag3\\[6pt]
&=\frac1{1-z}\left(n^{1-z}-1\right)+\frac12n^{-z}+\frac12
-\int_1^nzx^{-1-z}\left(\{x\}-\tfrac12\right)\mathrm{d}x\tag4\\
&=\frac1{1-z}\left(n^{1-z}-1\right)+\frac12\left(n^{-z}+1\right)-\frac{z}{12}\left(n^{-1-z}-1\right)\\
&-\int_1^nz(z+1)x^{-2-z}\left(\tfrac12\{x\}^2-\tfrac12\{x\}+\tfrac1{12}\right)\,\mathrm{d}x\tag5\\
&=\frac1{1-z}\left(n^{1-z}-1\right)+\frac12\left(n^{-z}+1\right)-\frac{z}{12}\left(n^{-1-z}-1\right)\\
&-\int_1^nz(z+1)(z+2)x^{-3-z}\left(\tfrac16\{x\}^3-\tfrac14\{x\}^2+\tfrac1{12}\{x\}\right)\mathrm{d}x\tag6\\
\end{align}
$$
Comparing $(1)$ and $(6)$ as $n\to\infty$ for $\mathrm{Re}(z)\gt1$, we get
$$
\begin{align}
\zeta(z)
&=\frac1{z-1}+\frac12+\frac{z}{12}\\
&-z(z+1)(z+2)\int_1^\infty x^{-3-z}\left(\tfrac16\{x\}^3-\tfrac14\{x\}^2+\tfrac1{12}\{x\}\right)\mathrm{d}x\tag7
\end{align}
$$
which, by analytic continuation, holds for all $z\ne1$.
For $z\ge-3$, we have
$$
0\le\int_n^\infty x^{-3-z}\left(\tfrac16\{x\}^3-\tfrac14\{x\}^2+\tfrac1{12}\{x\}\right)\mathrm{d}x\le\frac{n^{-3-z}}{384}\tag8
$$
On each interval $[k,k+1]$, we can replace $x^{-3-z}$ by $x^{-3-z}-\frac12\left(k^{-3-z}+(k+1)^{-3-z}\right)$. This doesn't change the integral since
$$
\int_k^{k+1}\left(\tfrac16\{x\}^3-\tfrac14\{x\}^2+\tfrac1{12}\{x\}\right)\mathrm{d}x=0\tag{8a}
$$
Furthermore,
$$
\left\|x^{-3-z}-\tfrac12\left(k^{-3-z}+(k+1)^{-3-z}\right)\right\|_{L^\infty[k,k+1]}=\tfrac12\left(k^{-3-z}-(k+1)^{-3-z}\right)\tag{8b}
$$
and
$$
\left\|\tfrac16\{x\}^3-\tfrac14\{x\}^2+\tfrac1{12}\{x\}\right\|_{L^1[k,k+1]}=\frac1{192}\tag{8c}
$$
Summing the product of $\text{(8b)}$ and $\text{(8c)}$ for $k\ge n$ yields $(8)$.
We can combine $(6)$, $(7)$, and $(8)$ to get
$$
\begin{align}
\sum_{k=1}^n\frac{1}{k^z}
&=\frac1{1-z}n^{1-z}+\frac12n^{-z}-\frac{z}{12}n^{-1-z}\\
&+\zeta(z)+z(z+1)(z+2)\int_n^\infty x^{-3-z}\left(\tfrac16\{x\}^3-\tfrac14\{x\}^2+\tfrac1{12}\{x\}\right)\mathrm{d}x\tag9
\end{align}
$$
Combining $(8)$ and $(9)$ gives
$$
0\le\sum_{k=1}^n\frac{1}{k^z}-\left(\zeta(z)+\frac{n^{1-z}}{1-z}+\frac{n^{-z}}2-\frac{z\,n^{-1-z}}{12}\right)\le\frac{z(z+1)(z+2)n^{-3-z}}{384}\tag{10}
$$
Note that $(10)$ yields $\zeta(0)=-\frac12$, $\zeta(-1)=-\frac1{12}$, and $\zeta(-2)=0$.
Estimate for $\boldsymbol{k\ne1}$
Translating $(10)$ into the symbols from the question, we get
$$
\bbox[5px,border:2px solid #C0A000]{0\le H_n^{(k)}-\left(\zeta(k)-\frac{n^{1-k}}{k-1}+\frac{n^{-k}}2-\frac{k\,n^{-1-k}}{12}\right)\le\frac{k(k+1)(k+2)n^{-3-k}}{384}}\tag{11}
$$
The next term in the Euler-Maclaurin Sum Formula is $+\frac{k(k+1)(k+2)n^{-3-k}}{720}$, which is close to the middle of the range in $(11)$
Estimate for $\boldsymbol{k=1}$
We can take the limit as $z\to1$ of $(6)$, where $\frac{n^{1-z}-1}{1-z}\to\log(n)$, to get
$$
\sum_{k=1}^n\frac1k
=\log(n)+\frac1{2n}-\frac1{12n^2}+\frac7{12}-\int_1^n\frac{2\{x\}^3-3\{x\}^2+\{x\}}{2x^4}\,\mathrm{d}x\,\tag{12}
$$
which gives the Euler-Mascheroni constant to be
$$
\gamma=\frac7{12}-\int_1^\infty\frac{2\{x\}^3-3\{x\}^2+\{x\}}{2x^4}\,\mathrm{d}x\,\tag{13}
$$
and the bounds
$$
0\le\sum_{k=1}^n\frac1k-\left(\log(n)+\gamma+\frac1{2n}-\frac1{12n^2}\right)\le\int_n^\infty\frac{2\{x\}^3-3\{x\}^2+\{x\}}{2x^4}\,\mathrm{d}x\tag{14}
$$
Estimating as in $(8)$, we get
$$
\bbox[5px,border:2px solid #C0A000]{0\le H_n-\left(\log(n)+\gamma+\frac1{2n}-\frac1{12n^2}\right)\le\frac1{64n^4}}\tag{15}
$$
The next term in the Euler-Maclaurin Sum Formula is $+\frac1{120n^4}$, which is close to the middle of the range in $(15)$