Taken from the link, tou need to find the zeros of the function
$$f(x)=x - \sin(x) - a\qquad \text{where} \qquad a=\frac{2\pi k}{n+1}$$ and only a numerical method would do except if you want some approximation.
Suppose that $x$ is small; expand as Taylor series
$$x-\sin(x)=\frac{x^3}{6}-\frac{x^5}{120}+\frac{x^7}{5040}-\frac{x^9}{362880}+O\left(x^{11}\right)$$
Now, using series reversion
$$x=t+\frac{t^3}{60}+\frac{t^5}{1400}+\frac{t^7}{25200}+O\left(t^{9}\right)\qquad \text{where} \qquad t=\sqrt[3]{6a}$$
Trying for $n=6$, we have
$$\left(
\begin{array}{ccc}
k & \text{approximation} & \text{exact} \\
1 & 1.85645 & 1.85694 \\
2 & 2.43566 & 2.44036 \\
3 & 2.89727 & 2.91624 \\
4 & 3.31189 & 3.36694 \\
5 & 3.70517 & 3.84283
\end{array}
\right)$$
Not perfect but not so bad (I hope). If you want to polish the root, use Newton method with these estimates. For $n=6$ and $k=5$, the iterates would be
$$\left(
\begin{array}{cc}
n & x_n \\
0 & 3.705173789 \\
1 & 3.839890315 \\
2 & 3.842826124 \\
3 & 3.842827697
\end{array}
\right)$$
We could do it better taking more terms in the series expansion and trensform the inverse series as a Padé approximant; this would give
$$x=t \,\,\frac{ 1-\frac{1493 }{21120}t^2+\frac{167 }{268800}t^4} {1-\frac{123 }{1408}t^2+\frac{403 }{295680}t^4 } \qquad \text{where} \qquad t=\sqrt[3]{6a}$$ For the worked example, the results would be
$$\{1.85693,2.44026,2.91548,3.36304,3.82569\}$$