Observation
Let $k,m\in\mathbb{Z}_+$
(1)
$$k^m\equiv k^{m+2}\pmod{2!},\ \ m\ge 1$$
(2)
$$k^m\equiv k^{m+2}\pmod{3!} ,\ \ m\ge 1 $$
(3)
$$k^m\equiv k^{m+2}\pmod{4!} ,\ \ m\ge 3 $$
(4)
$$k^m\equiv k^{m+4}\pmod{5!} ,\ \ m\ge 3 $$ (5)
$$k^m\equiv k^{m+12}\pmod{6!} ,\ \ m\ge 4 $$
Example: in observation (2)
Choose any $k\in\mathbb{Z}_+$, now choose any $m\in\mathbb{Z}_{\ge 1}$
Let $k=5,m=3\rightarrow 5^3\equiv 5^5\equiv 5^7\equiv 5^9\equiv\cdots \equiv 5^{d} \pmod{3!}$
Question
For equation $ k^m\equiv k^{m+t}\pmod{q!}$
$(1)$ For every $q$ , does there exist $m$ and $t$ which follows above equation?
$(2)$ Can we generalize relation between $m,t$ and $q$?