It's easy: $\,(f,g) = (f\!-\!g,g) = (\color{#c00}x^4(x\!-\!1),g)=\bbox[5px,border:1px solid #0a0]{x\!-\!1}\,$ by $\,\color{#c00}x\nmid g;\,\ x\!-\!1\mid g\,$ by $\,g(1)=0$
For part two, to find the gcd Bezout identity it suffices to solve
$$\begin{align} c\, (f-g)\ +\ b\, g &\,=\, x\!+\!1\,\ (=x\!-\!1)\\[.2em]
\iff\ c x^4(x\!+\!1) + b (1\!+\!x^3) (x\!+\!1) &\,=\, x\!+\!1\\[.2em]
\iff\ c\, x^4 + b\, (1\!+\!x^3) &\,=\, 1\ \ {\rm via\ cancel}\,\ x\!+\!1\end{align}$$
By inspection an obvious choice is $\, b = 1\!-\!x^3,\ c =\color{#0a0}{x^2}.\,$ Or, by Gauss's algorithm
$\bmod\, \color{#c00}{1+x^3}\!:\ \ c\equiv \dfrac{1}{x(\color{#c00}{x^3})}\equiv \dfrac{1}{x(\color{#c00}{-1})}\equiv \dfrac{x^2}{-\color{#c00}{x^3}}\equiv \dfrac{\color{#0a0}{x^2}}{\color{#c00}1}$
If you wish to mechanically apply the extended Euclidean algorithm (vs. above optimizations thereof) then it is most convenient to use the forward form described here. The vulgar backward form is far more cumbersome and error prone.