if-part
- $ab\geq 0$
- $a,b\in P\cup\{0\}$
- $\lvert a+b\rvert=a+b$, since if $a,b\in P\cup\{0\}$, then $a+b\in P\cup\{0\}$
- $a,b\geq0\rightarrow a=\lvert a\rvert,b=\lvert b\rvert\rightarrow a+b=\lvert a\rvert+\lvert b\rvert$
- $\lvert a+b\rvert=\lvert a\rvert+\lvert b\rvert$
only-if part
- $\lvert a+b\rvert=\lvert a\rvert+\lvert b\rvert$
- To be honest I don't know how to start with this side, so the question is how to start from point 1. Therefore, the following would be prove by contraposition.
- WLOG, $a\lt 0,b\geq 0$
- $\lvert a\rvert=-a,\lvert b\rvert=b$
- $b-a\neq a+b \neq -a-b$
Any suggestions to refine the only-if proof? The book I use is Introduction to real analysis by Robert G. Bartle and Donald R. Sherbert