Let's define the set of $r^{th}$-residues in $\mathbb{Z}_p^*$ as:
$\mathbb{Z}_p^r := \{ y \in \mathbb{Z}_p* : \exists x \in \mathbb{Z}_p^* \text{ such that } y = x^r\mod{p} \}$.
I am reading that when $p$ is prime for which $p-1=qr$ with $q$ a prime that is not a divisor of $r$, then:
- $\mathbb{Z}_p^r$ is an order $q$ cyclic subgroup of $\mathbb{Z}_p^*$
- For each $y \in \mathbb{Z}_p^*$, $y \in \mathbb{Z}_p^r$ if and only if $y^q \mod{p} = 1$
Why are this both statements true?