I was wondering if there is any possible way to define a limit for this form?
I tried using L’hopital rule and tried evaluating the limit:
$$\lim _{x\to 0} x^{x^{x^{x^{x^{x\cdots}}}}}$$
$$\lim _{x\to 0} x^{x^{x^{x^{x^{x\cdots}}}}} = \lim _{x\to 0} y$$
$$\lim_{x\to 0} x^y = \lim_{x\to 0} y$$
$$\lim _{x\to 0} \ln y = \lim _{x\to 0} \frac{\ln x}{\frac{1}{y}}$$
$lim _{x\to 0}$ $\ln y$ = $lim _{x\to 0} $$\frac{\frac{1}{x}}{-\frac{1}{y^{2}}\frac{dy}{dx}}$
$lim _{x\to 0}$ $\ln y$ = $lim _{x\to 0}$ $-\frac{y^{2}}{x}\frac{dx}{dy}$
$lim _{x\to 0}$ $x^{x^{y}}$ = $lim _{x\to 0}$ $y$
$lim _{x\to 0}$ $\ln y$ = $lim _{x\to 0}$ $\ln\left(\frac{\ln y}{\ln x}\right)$
following the same steps yield the result: $lim _{x\to 0}$ $\ln\left(\frac{\ln y}{\ln x}\right)$ = $lim _{x\to 0}$ $-\frac{y^{2}}{x}\frac{dx}{dy}$ substituting the previous result leads to the equation
$lim _{x\to 0}$ $\ln y$ = $lim _{x\to 0}$ $\ln\left(\frac{\ln y}{\ln x}\right)$
$lim _{x\to 0}$ $x^{x^{x^{x^{x^{x...}}}}}$ = $lim _{x\to 0}$ $\log_{x}\left(x^{x^{x^{x^{x...}}}}\right)\$$
substituting $x^{x^{x^{x^{x^{x...}}}}}$ as 0 or 1 does not satisfy the equation (as manually checking the limit with a calculator yields a result of a number that approaches 0 or 1).
However if I let $lim _{x\to 0}$ $x^{x^{x^{y}}}$= $lim _{x\to 0}$ $y$ then I will get the result such that
$lim _{x\to 0}$ $\ln\left(\frac{\ln\left(\frac{\ln y}{\ln x}\right)}{\ln x}\right)$ = $-\frac{y^{2}}{x}\frac{dx}{dy}$ = $lim _{x\to 0}$ $\ln y$
therefore another equation is made such that $lim _{x\to 0}$ $\log_{x}\left(\log_{x}\left(x^{x^{x^{x^{x...}}}}\right)\ \right)$= $lim _{x\to 0}$ $\ x^{x^{x^{x^{x...}}}}$ However, substituting the value of $\ x^{x^{x^{x^{x...}}}}$ as 0 or 1 satisfies the above equation.
So how does this work?
\lim
, when formatting, and not plainlim
. – amWhy Feb 25 '20 at 04:04