Indeed, it can be solved using only elementary number theory. My solution is a bit long though, and it may be possible to simplify it.
In the following proof, I will use the following result, which will be proved at the end:
Proposition: The following equations have finitely many non-negative integer solutions:
\begin{align}
1) & 2^a-3^b=1 \\
2) & 3^b-2^a=1 \\
3) & 2^a3^b-5^d=1 \\
4) & 5^d-2^a3^b=1 \\
5) & 3^b-2^c5^d=1 \\
6) & 2^c5^d-3^b=1 \\
7) & 3^b-5^d=2 \\
8) & 5^d-3^b=2
\end{align}
Each of these equations can easily be solved using only modular arithmetic. Suppose for now that the above proposition is true, and suppose any integer solution has $a, b, c, d$ bounded by $P \geq 1$ from above. (In fact, as we shall see later at the end, we can have $P=4$.) Choose $N>6(6)^P$.
Take $n>N$ and assume on the contrary that each of $n, n+1, \ldots , n+9$ has $\leq 2$ distinct prime factors. There are exactly $5$ even numbers $2m, 2(m+1), 2(m+2), 2(m+3), 2(m+4)$ among these 10 consecutive numbers, so each of $m, m+1, m+2, m+3, m+4$ must be of the form $2^ap^k$. (The odd part must be a prime power) Note that $2m \geq n>N>6(6^P)$, so $m>3(6^P)$.
If $m \equiv 0 \pmod{3}$, then both $m$ and $m+3$ are divisible by $3$, so exactly one of $\frac{m}{3}$ and $\frac{m+3}{3}=\frac{m}{3}+1$ is divisible by $3$. Thus one of $\frac{m}{3}$ and $\frac{m}{3}+1$ is a power of $2$, and the other is a power of $3$. This gives $2^a-3^b= \pm 1$, which corresponds to equations $1, 2$ of the proposition. This implies that $m$ is either $3(2^a)$ or $3(3^b)$, and in any case, $3(6^P)<m \leq 3(3^P)$, a contradiction.
Similarly, if $m \equiv 2 \pmod{3}$, then one of $\frac{m+1}{3}$ and $\frac{m+1}{3}+1$ is a power of $2$, and the other is a power of $3$, and again we get $2^a-3^b= \pm 1$, which corresponds to equations $1, 2$ of the proposition. Similarly $m+1$ is either $3(2^a)$ or $3(3^b)$, and in any case, $3(6^P)+1<m+1 \leq 3(3^P)$, a contradiction.
Therefore $m \equiv 1 \pmod{3}$. This implies that $m+2$ is divisible by $3$, so let $m+2=2^a3^b$ for some non-negative integers $a, b$. Then exactly one of $m, m+1, m+3, m+4$ is a multiple of $5$ and thus equal to $2^c5^d$. Therefore $2^a3^b-2^c5^d= \pm 1, \pm 2$.
If $2^a3^b-2^c5^d=\pm 1$, then clearly $a, c$ cannot be both $\geq 1$, so at least one of them is $0$. If $a=0$, we get $3^b-2^c5^d=\pm 1$, which corresponds to equations $5, 6$ of the proposition. This implies that $3(10^P)+2<m+2=3^b \leq 3^P$, a contradiction. If $c=0$, then we get $2^a3^b-5^d= \pm 1$, which corresponds to equations $3, 4$ of the proposition. This implies that $3(6^P)+2<m+2=2^a3^b \leq 6^P$, a contradiction.
Therefore $2^a3^b-2^c5^d=\pm 2$. If $a, c \geq 1$, then $2^{a-1}3^b-2^{c-1}5^d=\pm 1$. As above, $a-1, c-1$ cannot be both $\geq 1$, so at least one of them is $0$. If $a-1=0$, then we get $3^b-2^{c-1}5^d=\pm 1$, which corresponds to equations $5, 6$ of the proposition. This implies that $3(6^P)+2<m+2=2(3^b) \leq 2(3^P)$, a contradiction. If $c-1=0$, then we get $2^{a-1}3^b-5^d= \pm 1$, which corresponds to equations $3, 4$ of the proposition. This implies that $3(6^P)+2<m+2=2^a3^b \leq 2(6^P)$, a contradiction.
Therefore at least one of $a, c$ is $0$. If $a=0$, then $3^b-2^c5^d=\pm 2$, so $2 \nmid 2^c5^d$, so $c=0$. Similarly if $c=0$, then $2^a3^b-5^d=\pm 2$, so $2 \nmid 2^a3^b$, so $a=0$. Thus $a=c=0$, and we get $3^b-5^d=\pm 2$, which corresponds to equations $7, 8$ of the proposition. Thus $3(6^P)+2<m+2=3^b \leq 3^P$, a contradiction.
Therefore for $n>N$, there exists $m \in \{n, n+1, n+2, \ldots , n+9\}$ s.t. $m$ has $\geq 3$ prime factors.
Proof of Proposition:
We shall go 1 step further; we shall find all non-negative integer solutions.
\begin{align} 1) & 2^a-3^b=1 \end{align}
If $b=0$, then $a=1$. Otherwise $b \geq 1$. Taking $\pmod{3}$ gives $2^a \equiv 1 \pmod{3}$, so $a$ is even. Thus $3^b=2^a-1=(2^{\frac{a}{2}}-1)(2^{\frac{a}{2}}+1)$. Since $\gcd(2^{\frac{a}{2}}-1, 2^{\frac{a}{2}}+1)=1$ and $1 \leq 2^{\frac{a}{2}}-1<2^{\frac{a}{2}}+1)$, we have $2^{\frac{a}{2}}-1=1$, so $a=2$, giving $b=1$.
We thus have the solutions $(a, b)=(1, 0), (2, 1)$.
\begin{align} 2) & 3^b-2^a=1 \end{align}
If $a=0$, then $3^b=2$, a contradiction. If $a=1$, then $3^b=3$, so $b=1$. Otherwise $a \geq 2$. Taking $\pmod{4}$, $3^b \equiv 1 \pmod{4}$, so $b$ is even.
Thus $2^a=3^b-1=(3^{\frac{b}{2}}-1)(3^{\frac{b}{2}}+1)$. Note that $\gcd(3^{\frac{b}{2}}-1,3^{\frac{b}{2}}+1)=2$, so exactly one of $3^{\frac{b}{2}}-1$ and $3^{\frac{b}{2}}+1$ is equal to $2$. If $3^{\frac{b}{2}}+1=2$, then $3^{\frac{b}{2}}-1=0$, so $2^a=0$, a contradiction. Thus $3^{\frac{b}{2}}-1=2$, so $b=2$, giving $a=3$.
We thus have the solutions $(a, b)=(1, 1), (3, 2)$.
\begin{align} 3) & 2^a3^b-5^d=1 \end{align}
Taking $\pmod{4}$, $2^a3^b=5^d+1 \equiv 2 \pmod{4}$. Thus $a=1$, so $2(3^b)=5^d+1$. If $d=0$, then $b=0$. Otherwise $d \geq 1$. Taking $\pmod{5}$, we have $2(3^b) \equiv 1 \pmod{5}$, so $b \equiv 1 \pmod{4}$. Taking $\pmod{3}$, we have $5^d \equiv -1 \pmod{3}$ so $d$ is odd. This implies that $d \geq 1$, so $2(3^b)=5^d+1 \geq 5+1=6$, so $b \geq 1$. If $b=1$, then $d=1$. Otherwise $b \geq 2$, so taking $\pmod{9}$, we have $5^d \equiv -1 \pmod{9}$, so $d \equiv 3 \pmod{6}$. Thus taking $\pmod{7}$, $2(3^b)=5^d+1 \equiv 5^3+1 \equiv 0 \pmod{7}$, a contradiction.
We thus have the solutions $(a, b, d)=(1, 0, 0), (1, 1, 1)$.
\begin{align} 4) & 5^d-2^a3^b=1 \end{align}
Taking $\pmod{4}$, we have $2^a3^b \equiv 0 \pmod{4}$, so $a \geq 2$. If $b=0$, then $5^d-2^a=1$. Now if $a=2$, then $d=1$. Otherwise $a \geq 3$, so taking $\pmod{8}$, we have $5^d \equiv 1 \pmod{8}$, so $d$ is even. Thus $2^a=5^d-1=(5^{\frac{d}{2}}-1)(5^{\frac{d}{2}}+1)$. We have $5^{\frac{d}{2}}+1 \equiv 2 \pmod{4}$, so $5^{\frac{d}{2}}+1=2$, so $5^{\frac{d}{2}}-1=0$, so $2^a=0$, a contradiction.
Otherwise $b \geq 1$. Taking $\pmod{3}$, we have $5^d \equiv 1 \pmod{3}$, so $d$ is even. Thus $2^a3^b=5^d-1=(5^{\frac{d}{2}}-1)(5^{\frac{d}{2}}+1)$. Note that $\gcd(5^{\frac{d}{2}}-1, 5^{\frac{d}{2}}+1)=2$ and $5^{\frac{d}{2}}+1 \equiv 2 \pmod{4}$, so $5^{\frac{d}{2}}+1=2, 2(3^b)$.
If $5^{\frac{d}{2}}+1=2$, then $5^{\frac{d}{2}}-1=0$, so $2^a3^b=0$, a contradiction. Thus $5^{\frac{d}{2}}+1=2(3^b)$, and $5^{\frac{d}{2}}-1=2^{a-1}$. We have already shown above that the only non-negative integer solutions to $5^d-2^a=1$ is $(a, d)=(2, 1)$, so $\frac{d}{2}=1, a-1=2$, giving $d=2, a=3$. Thus $2(3^b)= 5^{\frac{d}{2}}+1=6$, so $b=1$.
We thus have the solutions $(a, b, d)=(2, 0, 1), (3, 1, 2)$.
\begin{align} 5) & 3^b-2^c5^d=1 \end{align}
If $d=0$, $3^b-2^c=1$, so by the above solution of equation $2$, we have $(c, b)=(1, 1), (3, 2)$. Otherwise $d \geq 1$.
Taking $\pmod{5}$, $3^b \equiv 1 \pmod{5}$, so $4 \mid b$. Thus $2^c5^d=3^b-1=(3^{\frac{b}{2}}-1)(3^{\frac{b}{2}}+1)$. Note that $\gcd(3^{\frac{b}{2}}-1,3^{\frac{b}{2}}+1)=2$ and $3^{\frac{b}{2}}+1 \equiv 2 \pmod{4}$. Thus $3^{\frac{b}{2}}+1=2, 2(5^d)$. If $3^{\frac{b}{2}}+1=2$, then $3^{\frac{b}{2}}-1=0$, so $2^c5^d=0$, a contradiction.
Thus $3^{\frac{b}{2}}+1=2(5^d), 3^{\frac{b}{2}}-1=2^{c-1}$. By the above solution of equation $2$, we have $(c-1, \frac{b}{2})=(1, 1), (3, 2)$. Since $4\mid b$, we cannot have $\frac{b}{2}=1$, so $\frac{b}{2}=2, c-1=3$. This gives $b=c=4$, so $2(5^d)=3^{\frac{b}{2}}+1=10$, giving $d=1$.
We thus have the solutions $(b, c, d)=(1, 1, 0), (2, 3, 0), (4, 4, 1)$.
\begin{align} 6) & 2^c5^d-3^b=1 \end{align}
If $d=0$, $2^c-3^b=1$, so by the above solution of equation $1$, we have $(c, b)=(1, 0), (2, 1)$. Otherwise $d \geq 1$. Taking $\pmod{5}$, $3^b \equiv 4 \pmod{5}$, so $b \equiv 2 \pmod{4}$. Thus $2^c5^d=3^b+1 \equiv 2 \pmod{4}$, so $c=1$. This gives $2(5^d)=3^b+1$. Since $b \equiv 2 \pmod{4}$, b \geq 2$.
Taking $\pmod{9}$, $2(5^d) \equiv 1 \pmod{9}$, so $d \equiv 1 \pmod{6}$. Taking $\pmod{7}$, $3^b=2(5^d)-1 \equiv 2(5)-1 \equiv 9 \pmod{7}$, so $b \equiv 2 \pmod{6}$.
If $b=2$, then $d=1$. Otherwise $b \geq 3$. Taking $\pmod{27}$, $2(5^d) \equiv 1 \pmod{27}$, so $d \equiv 7 \pmod{18}$. Now taking $\pmod{19}$ gives $3^b=2(5^d)-1 \equiv 2(5^7)-1 \equiv 12 \pmod{19}$, so $b \equiv 15 \pmod{18}$, a contradiction.
We thus have the solutions $(b, c, d)=(0, 1, 0), (1, 2, 0), (2, 1, 1)$.
\begin{align} 7) & 3^b-5^d=2 \end{align}
If $d=0$, then $b=1$. Otherwise $d \geq 1$. Taking $\pmod{5}$, $3^b \equiv 2 \pmod{5}$, so $b \equiv 3 \pmod{4}$. Taking $\pmod{16}$, we have $5^d=3^b-2 \equiv 3^3-2 \equiv 9 \pmod{16}$, so $d \equiv 2 \pmod{4}$. Thus $d \geq 2, b \geq 3$. Taking $\pmod{9}$, $5^d \equiv 7 \pmod{9}$, so $d \equiv 2 \pmod{6}$.
Taking $\pmod{7}$, we have $3^b=5^d+2 \equiv 5^2+2 \equiv 6 \pmod{7}$, so $b\equiv 3 \pmod{6}$. Taking $\pmod{27}$, $5^d \equiv 25 \pmod{27}$, so $d \equiv 2 \pmod{18}$. Taking $\pmod{19}$, we have $3^b=5^d+2 \equiv 5^2+2 \equiv 27 \pmod{19}$, so $b \equiv 3 \pmod{18}$.
Now if $b=3$, then $d=2$. Otherwise $b \geq 4$. Taking $\pmod{81}$, we have $5^d \equiv 79 \pmod{81}$, so $d \equiv 20 \pmod{54}$. Thus $d \equiv 74 \pmod{108}$. Taking $\pmod{109}$, we have $3^b=5^d+2 \equiv 5^{74}+2 \equiv 35+2 \equiv 37 \pmod{109}$. However, if we let $b=18k+3$, then we have $3^b \equiv 27(45^k) \equiv 16, 66, 27 \pmod{109}$, a contradiction.
We thus have the solutions $(b, d)=(1, 0), (3, 2)$.
\begin{align} 8) & 5^d-3^b=2 \end{align}
If $b=0$, then $5^d=3$, a contradiction. If $b=1$, then $d=1$. Otherwise $b \geq 2$, so $5^d=3^b+2 \geq 9+2$, so $d \geq 2$. Taking $\pmod{9}$, $5^d \equiv 2 \pmod{9}$, so $d \equiv 5 \pmod{6}$. Taking $\pmod{7}$, $3^b=5^d-2 \equiv 5^5-2 \equiv 1 \pmod{7}$, so $6 \mid b$. Taking $\pmod{5}$, $3^b \equiv 3 \pmod{5}$, so $b \equiv 1 \pmod{4}$, a contradiction.
We thus have the solution $(b, d)=(1, 1)$.