-1

How can we prove or disprove that: $$\forall x \in \mathbb{A}\setminus\{0\} \implies \sin{x} \in \mathbb{R}\setminus\mathbb{A}$$ Is that holds for other trig functions?

2 Answers2

1

The Hermite-Lindemann (Transcendence) Theorem (which is deep) is that if $a_1,..,a_n$ are $n$ distinct algebraic numbers and $A_1,..., A_n$ are non-$0$ algebraic, then $\sum_{j=1}^nA_je^{a_j}\ne 0.$

Equivalently, if $a_1,...,a_m$ are $m$ distinct algebraics and (in case $m=1$) not all $a_j=0,$ and if $A_1,..., A_m$ are non-$0$ algebraic, then $\sum_{j=1}^mA_je^{a_j}$ is transcendental.

If $0\ne t\in A$ then with $a_1=it,\,a_2=-it,$ and $A_1=1=-A_2,$ we have $2i\sin t=A_1e^{a_1}+A_2e^{a_2}\not \in A,$ so $\sin t \not \in A.$

0

With less than Lindemann-Weierstrass: only Lindemann. If $\sin(x)\in\overline{\mathbb Q}$, $i\cos(x)$ is too. So is $e^{ix}$.

joaopa
  • 1,139