Can someone verify my proof by induction for the following: $2+6+18+...+2 \cdot 3^{n-1} = 3^n - 1, n\geq 1$.
Basis $n = 1$: \begin{align*} 2+6+18+...+2 \cdot 3^{n-1} = 3^n - 1 &= \sum\limits_{i=1}^{n} 2 \cdot 3^{n-1} = 3^n -1 \\ 2+6+18+...+2 \cdot 3^{1-1} &= 3^1 - 1 \\ \sum\limits_{i=1}^{n} 2 \cdot 3^{1-1} &= 3^1 -1 \\ 2 \cdot 1 = 3-1 \\ 2 = 2 \checkmark \\ \end{align*} Inductive Hypothesis: Assume $P(x)$ is true, i.e., \begin{align*} \sum\limits_{i=1}^{n} 2 \cdot 3^{i-1} &= 3^k -1 \\ \end{align*} Inductive Step: Show $P(k+1)$ is true, i.e., \begin{align*} \sum\limits_{i=1}^{k+1} 2 \cdot 3^{i-1} &= 3^{k+1} -1 \\ \sum\limits_{i=1}^{k+1} 2 \cdot 3^{i} &= 3^{k+1} -1 \\ \end{align*}