I am learning calculus and came across the following problem:
Find $\frac{dx}{d\theta}$ when $x=\sin^2\theta \cos^3\theta$
I solved this using the product rule.
$$u= \sin^2\theta \qquad v=\cos^3\theta$$
$$u'= \sin2\theta \qquad v'=-3\cos^2\theta \sin\theta$$
$$\begin{align} \frac{dx}{d\theta}&= \sin^2\theta(-3\cos^2\theta \sin\theta) +\cos^3\theta(\sin2\theta) \\ &= -3\cos^2\theta \sin^3\theta + \cos^3\theta \sin2\theta \end{align}$$
The problem is that this does not match any of the options the exercise provides, so how can I simplify it further? Are there common methods for simplification?