Prove that for any positive integers $a,b,c$ we have
$\operatorname{lcm}(a,b,c)=\dfrac{abc \operatorname{gcd}(a,b,c)} {\operatorname{gcd}(a,b)\operatorname{gcd}(b,c)\operatorname{gcd}(c,a)}$
To prove this, I used this: for two positive integers $a,b$ is $\operatorname{lcm}(a,b)=\frac{ab}{\gcd(a,b)}$
but I could do nothing, can you help?