I need to calculate the following limit without using L'Hospital's rule:
$$\lim_{x \to 2} \frac{\cos(\pi/x)}{2-x}$$
I need to calculate the following limit without using L'Hospital's rule:
$$\lim_{x \to 2} \frac{\cos(\pi/x)}{2-x}$$
Let $t=2-x$. Then,
$$\lim_{x \to 2} \frac{\cos(\pi/x)}{2-x}=\lim_{t \to 0} \frac{\cos\frac{\pi}{2-t}}{t} =\lim_{t \to 0} \frac{\sin\frac{t\pi}{2(t-2)}}{t} =\lim_{t \to 0} \frac{\sin\frac{t\pi}{2(t-2)}}{\frac{t\pi}{2(t-2)}}\lim_{t \to 0}\frac{\pi}{2(t-2)}=-\frac\pi4$$
where $\lim_{u \to 0}\frac{\sin u}{u} =1$ is used.
$x=2+y$, then $$L=\lim_{x \rightarrow 2} \frac{\cos(\pi/x)}{2-x} \lim_{ \rightarrow 0} \frac{\cos(\pi/(2+y))}{-y}= \lim_{y \rightarrow 0} \frac{\cos(\pi/2(1-y/2))}{-y}=\lim_{y \rightarrow 0} \frac{\cos(\pi/2-\pi y/4)}{-y}=\lim_{x \rightarrow 0} \frac{\sin (\pi y/4)}{-y}=-\frac{\pi}{4}$$. In above we have used $\frac{\pi}{2+y}=\frac{\pi}{2}(1+y/2)^{-1} \approx\frac{\pi}{2}(1-y/2)$ (Binomial approx.)
Hint
Use $$\cos\dfrac\pi x=\sin\left(\dfrac\pi2-\dfrac\pi x\right)=\sin\dfrac{\pi(x-2)}{2x}$$
to find $$-\lim_{x\to2}\dfrac{\sin\dfrac{\pi(x-2)}{2x}}{\dfrac{\pi(x-2)}{2x}}\cdot\lim_{x\to2}\dfrac\pi{2x}=?$$
and Why the limit of $\frac{\sin(x)}{x}$ as $x$ approaches 0 is 1?