We will use the fact that $\int^{\infty}_{-\infty}\frac{\sin tx}{x}dx=\pi\ \text{sgn}\ t.$ First, split the integral up into two parts and write the second part as ${\displaystyle\int}\dfrac{1}{\left(\frac{1}{x^2}+1\right)x^3}\,\mathrm{d}x$. We find that
$\displaystyle\int \dfrac{1}{x\left(x^2+1\right)}dx=-\dfrac{\ln\left(\frac{1}{x^2}+1\right)}{2}+C$. Thus, this part of the definite integral is zero.
For the first part, omitting the factor $1/\pi$ for the moment, integrate ${\displaystyle\int}\dfrac{\mathrm{e}^{\mathrm{i}tx}-1}{x^2}\,\mathrm{d}x$ by parts, to get $-\dfrac{\mathrm{e}^{\mathrm{i}tx}-1}{x}-{\displaystyle\int}-\dfrac{\mathrm{i}t\mathrm{e}^{\mathrm{i}tx}}{x}\,\mathrm{d}x.$ The first term gives zero so we are left with
${\displaystyle\int^{\infty}_{-\infty}}\dfrac{\mathrm{i}t\mathrm{e}^{\mathrm{i}tx}}{x}\,\mathrm{d}x=\displaystyle it\int^{\infty}_{-\infty}\frac{\cos tx}{x}dx-t\int^{\infty}_{-\infty}\frac{\sin tx}{x}dx.$
Using the definition of the Cauchy principal value, we may interpret the first of these integrals on the right-hand side as in $(1)$ in the above-cited link. It is then seen to be zero because the integrand is odd. So, finally, we have
$\displaystyle -t\int^{\infty}_{-\infty}\frac{\sin tx}{x}dx=-t(\pi\ \text{sgn}\ t)$. All that remains now is to multiply by $1/\pi$.