0

Suppose $a$ is a positive integer which is coprime to 10. Show that $$a^{2001} \equiv a \pmod {1000}$$

I know it has something to do with the Fermat-Euler theorem.

$\phi(1000) = 400$ and $a^{400}\equiv 1 \pmod {1000}$

However, I do not know how to proceed from here to show the congruence

Bernard
  • 175,478

2 Answers2

3

$a^{2000}≡a^{5\cdot400}=\left(a^{400}\right)^5≡1 (\mod 1000)$ therefore $^{2001}≡^{2000}≡[1]≡$

Kyan Cheung
  • 3,184
  • 2
    Tip: you can use \pmod to automatically get proper spacing on the modulo symbol: $a\equiv b\pmod{c}$ – Wojowu Feb 18 '20 at 12:01
1

As $1000=2^35^3$

Using Carmichael Function

$\lambda(5^32^3)=100,5^3$ will divide $a^n-1$ if $100|n$ and $(a,10)=1$