How to calculate the following integral? $\int_{- \infty}^{\infty} \mathrm{e}^{- \frac{x^2}{2}} \mathrm{d} x$
3 Answers
There's a well known trick for this integral: \begin{align*} \left(\int_{-\infty}^\infty e^{-\frac{x^2}{2}}\,\mathrm{d}x\right)^2 &= \int_{-\infty}^\infty\int_{-\infty}^\infty e^{-\frac{x^2+y^2}{2}}\,\mathrm{d}x\mathrm{d}y \\ &= \int_0^\infty\int_0^{2\pi} e^{-\frac{r^2}{2}}r\,\mathrm{d}\theta\mathrm{d}r \\ &= 2\pi \left[-e^{-\frac{r^2}{2}}\right]_{0}^\infty \\ &= 2\pi \end{align*} Hence, $\int_{-\infty}^\infty e^{-\frac{x^2}{2}}\,\mathrm{d}x = \sqrt{2\pi}$

- 7,312
Hint:
$$S:=\int\limits_{-\infty}^\infty e^{-x^2/2}dx\implies S^2=\int\limits_{-\infty}^\infty e^{-x^2/2}dx\int\limits_{-\infty}^\infty e^{-y^2/2}dy=\int\limits_{-\infty}^\infty e^{-\frac{x^2+y^2}{2}}dx\,dy=$$
$$=\int\limits_0^\infty\int_0^{2\pi}re^{-\frac{r^2}{2}}d\theta\,dr=\left.-2\pi e^{-\frac{r^2}{2}}\right|_0^\infty=\ldots$$

- 211,718
- 17
- 136
- 287
Hint: Let $y=\frac{x}{\sqrt{2}}$ and make a change of variables, then use the formula $$\int_{-\infty}^\infty e^{-x^2}\,dx=\sqrt{\pi}.$$

- 24,751
-
Do you mean we should learn this integral? I have been told by my teacher that indefinite integral of this doesn't exist. – ABC Apr 08 '13 at 17:07
-
-
@NZhang: It would appear there are plenty of answers to help guide you along the proof of the formula. The main idea is using polar coordinates and getting the extra $r$ to integrate. – Clayton Apr 08 '13 at 17:10
-
1@exploringnet, the indefinite integral does exist, it just can't be expressed in terms of elementary functions (algebraic, exponentials, trigonometric functions and their inverses). – vonbrand Apr 08 '13 at 17:17