Let $X,Y$ be Exponential random variables with parameter alpha and beta.
Appendix: Evaluation of the integral: \begin{align} f_{X/Y}(u) = {} & \alpha\beta \int_0^\infty e^{-(\alpha u+\beta)y} y \, dy \\[8pt] = {} & \frac{\alpha\beta}{(\alpha u+\beta)^2} \int_0^\infty e^{-(\alpha u+\beta)y} (\alpha u+\beta) y \big( (\alpha u + \beta) \, dy \big) \\[8pt] = {} & \frac{\alpha\beta}{(\alpha u+\beta)^2} \int_0^\infty e^{-v} v \,dv \\[8pt] = {} & \frac{\alpha\beta}{(\alpha u+\beta)^2}. \end{align}
I know that $E[X] = \int_{-\infty}^\infty x f(x) dx$. I want to use this formula but I know what $f_{\frac{X}{Y}}$ is without knowing what "$X$" is.
I don't know what $"x"$ is when if I were to find the $E[\frac{X}{Y}]$ by using the formula $E[X] = \int_{-\infty}^\infty x f(x) dx$. What am I letting X and Y be in the integral?