Let $$a^x \equiv b^x \pmod p$$ and $$a^y \equiv b^y \pmod p$$ and $\gcd(y, x)=1$ then prove that $$a \equiv b \pmod p$$ As it is given that gcd$(y, x)=1$ so by the fundamental theorem of arithmetic there exists integers $u$ and $v$ such that $ux+vy=1$. Now without the loss of generality let us assume that $a < b$ then $b=a+k$ for some positive integer $k$. Now $$a+k=(a+k)^{ux+vy} \equiv a^{ux+vy}=a \pmod p.$$ So we get $p$ divides $k=b-a$. So $b \equiv a \pmod p$
$$$$$ Is My Proof Correct???
$\bmod p$
produces $\bmod p$ – J. W. Tanner Feb 16 '20 at 17:53