Question_
Does $$\sum_{n=1}^{\infty} n \sin\left({1\over n}\right)$$ converge or diverge?
When I use the Taylor series: $$\sin\left({1 \over x}\right)=\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{(2k-1)!x^k}$$ $$x\sin\left({1 \over x}\right)=1-{1\over 3!x^2}+{1\over5!x^4}-\cdots$$ Although $$\sum_{n=1}^{\infty}{1\over x^m}$$ converges if $m>1$, $\sum{1}$ diverges, so it is impossible to explicit all the terms. Then, how can I check the convergence(or divergence) of the series? Also, I've got stuck in a similar series: $$\sum_{n=1}^{\infty} n \tan\left({1\over n}\right)$$ Could you please help me to get in the right way? Thanks.