Let $(\Omega,\mathcal{F},P)$ be a probability space and $X$ be a random variable on it. Consider a sub $\sigma$-algebra $\mathcal{G}$. $X$ is said to be independent of $\mathcal{G}$ if $\sigma(X)$ and $\mathcal{G}$ are independent as $\sigma$-algebras.
I already know the fact that independence of $X$ and $\mathcal{G}$ implies $\mathbb{E}[X|\mathcal{G}]=\mathbb{E}[X]$ but not necessarily the other way round. However, if $X$ satisfies the equality $\mathbb{E}[e^{itX}|\mathcal{G}]=\mathbb{E}[e^{itX}]$, for all $t\in\mathbb{R}$, then can we conclude that $X$ and $\mathcal{G}$ are independent?