You are almost there, just recall the relation $ \sin^2(x) + \cos^2(x)=1$. So setting $y=\cos^{-1}(x)$, $x=\cos(y)$ one has
$$
\tan^{-1}(\frac{\sqrt{1-x^2}}{x})=\tan^{-1}\left(\frac{\sqrt{1-\cos^2(y)}}{\cos(y)}\right)
=\tan^{-1}\left(\frac{\sin(y)}{\cos(y)}\right)
=\tan^{-1}\left( \tan(y) \right) =y =\cos^{-1}(x)
$$
Concerning point (2): I think intuitive understanding is sufficient. For a negative $x<0$ you add to the function value at zero $\cos^{-1}(0)=\frac{\pi}{2}$ the number $\frac{\pi}{2}-\cos^{-1}(-x)$, look at the graph: acos_chart. One so has:
$$ \cos^{-1}(x)|_{x<0}= \frac{\pi}{2} + \left[\frac{\pi}{2}-\cos^{-1}(-x) \right] $$
$$\cos^{-1}(x)|_{x<0}=\pi-\tan^{-1}\left(\frac{\sqrt{1-x^2}}{-x}\right)$$
Arcustangent is an odd function: changing the sign of the argument changes the sign before the function
$$\cos^{-1}(x)|_{x<0}=\pi+\tan^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right)$$
EDIT: more details about point (2). Looking at the graph acos_chart one sees that $f(x)= \cos^{-1}(x)-\frac{\pi}{2}$ is an odd function (you translate the graph downwards by $\pi/2$). One has $f(x)=-f(-x)$. So now:
$$ \cos^{-1}(x)|_{x<0} = f(x) + \frac{\pi}{2} = -f(-x) + \frac{\pi}{2} = -(\cos^{-1}(-x)-\frac{\pi}{2}) + \frac{\pi}{2}$$
$$ = -\cos^{-1}(-x)+\frac{\pi}{2} + \frac{\pi}{2} = -\tan^{-1}(\frac{\sqrt{1-x^2}}{-x})+\pi =\pi + \tan^{-1}(\frac{\sqrt{1-x^2}}{x})$$