Let $f(x)$ be a continuous function on $[a, b]$ (not necessarily derivable) and satisfy $f(a)<f(b)$. At the same time, the limit $g(x)=\lim_{t \to 0} \frac{f(x+t)-f(x-t)}{t}$ exists for all $x\in(a,b)$.
Prove that there is a $c\in(a,b)$ such that $g(c)\geqslant0$.