$G$ is the multiplicative group of nonzero reals with each real $\,r\,$ "renamed" to $\, r-1\,$ via the bijection $\,h': r\to r-1.\,$ Indeed the inverse "unnaming" map $\,h\!:\ r\to r+1\,$ is clearly a homomorphism
$$\overbrace{ab+a+b+1 \,=\, (a+1)(b+1)}^{\ \ \ \textstyle h(a*b)\, =\, h(a)h(b)}$$
$$\begin{align}{\rm thus}\qquad\quad &\ \ \ \ 1_*\ =\ r^{-1}\,*\,r\\[.3em]
\iff\ & h(1_*) = h(r^{-1})\,h(r)\\[.3em]
\iff\ &\ \ \ \ 1\, =\, (r^{-1}\!+\!1)(r\!+\!1)\\[.3em]
\iff\ &\ r^{-1} = \dfrac{1}{r+1}-1 \,=\, \bbox[5px,border:1px solid #c00]{\dfrac{\!\!-r}{r+1}}\end{align}$$
Or $\,\ r^{-1} = h'h(r^{-1}) = h'(h(r)^{-1}) = h'((r\!+\!1)^{-1}) = (r\!+\!1)^{-1}-1$
As above, to perform a group operation $a*b$ in $G,$ unname the operands to reals $\,a,b\to \color{0a0}{ha,hb},\,$ then perform the operation in $\Bbb R$ to get $\color{#0a0}{ha\cdot hb},\,$ then apply $h'$ to rename the result into $G,$ i.e.
$$\begin{align} a*b\,\ &= h'(\color{#0a0}{ha\cdot hb})\\[.3em]
\smash{\overset{\large h(\ \ )_{\phantom{|}}\!\!}\iff}\ h(a * b) &=\, h(a)\cdot h(b)
\end{align}\qquad$$
As we see above, this is equivalent to the bijection $h$ being a homomorphism. Thus given any bijection on the underlying set of a group we can "transport" the algebraic operations along the bijection to induce the same algebraic structure on the renamed image. The same idea works for any algebraic structure - see transport of structure. Follow the link for more examples.