Let $W$ be defined as $W=(\sum_{i=1}^{n}V_{i})^{2}$ and $\left|V_{i}\right|\leq 1$. Determine that $\mathbb{E}[\left|W\right|]<\infty$.
What I have so far updated version:
$$\mathbb{E}\left[\left|W\right|\right]=\mathbb{E}\left[\left|\left(\sum_{i=1}^{n} V_{i}\right)^{2}\right|\right]=\mathbb{E}\left[\left|\sum_{i=1}^{n} V_{i}\cdot\sum_{i=1}^{n} V_{i}\right|\right]\leq \mathbb{E}\left[\sum_{i=1}^{n}\left| V_{i}\right|\cdot\sum_{i=1}^{n}\left| V_{i}\right|\right] = \\ \sum_{i,j}^{n}\mathbb{E}\left[\left| V_{i}\right|\cdot\left| V_{j}\right|\right] $$
Note in the 3rd step I used the Cauchy-Schwarz and in the 4th step linearity of expectation. But now I am stuck, what step do I take next?
Since I believe you can also write
$$\mathbb{E}\left[\left|\left(\sum_{i=1}^{n} V_{i}\right)^{2}\right|\right]=\mathbb{E}\left[\left|\sum_{i=1}^{n} V_{i}^{2}+2\sum_{i<j}^{n} V_{i}V_{j}\right|\right].$$
This confuses me.