Let $x,y\in \mathbb{R}$ such that $$\sqrt{\left(\frac{x+y}{2}\right)^3}+\sqrt{\left(\frac{x-y}{2}\right)^3}=27$$. Find the minimize value of $x$.
[Edit by Michael Rozenberg] I tried to use AM-GM to retire the radical but failed: $$27=\sqrt{\left(\frac{x+y}{2}\right)^3}+\sqrt{\left(\frac{x-y}{2}\right)^3}\geq2\sqrt[4]{\left(\frac{x+y}{2}\right)^3\left(\frac{x-y}{2}\right)^3}=$$ $$=2\sqrt[4]{\frac{(x^2-y^2)^3}{64}}=\sqrt[4]{\frac{(x^2-y^2)^3}{4}}.$$ Help me