In the very beginning, I'm going to refer to an answer by @BillDubuque: https://math.stackexchange.com/a/48533/721644,
that motivated me to generalize my problem.
Instead of proving $\left(3+\sqrt{5}\right)^n+\left(3-\sqrt{5}\right)^n=2k,k\in\mathbb N$
I wanted to prove:
$\left(a+\sqrt{b}\right)^n+\left(a-\sqrt{b}\right)^n=2k,a,b,k\in\mathbb N, a>b$.
I haven't learned about groups yet. We have only mentioned them once or twice, so I wanted to stick to the given strong induction problem in a more abstract degree.
$(1)$ base case: $\tau(1)$ $$2a\in 2\mathbb N$$ $(2)$ assumption:
Let the statement $$\left(a+\sqrt{b}\right)^n+\left(a-\sqrt{b}\right)^n=2k,k\in\mathbb N$$
hold for some $\{1,\ldots,n\}$.
$(3)$ step: $\tau(n+1)$
\begin{equation}\left(a+\sqrt{b}\right)^{n+1}+\left(a-\sqrt{b}\right)^{n+1}=\left(a+\sqrt{b}\right)^n(a+\sqrt{b})+\left(a-\sqrt{b}\right)^n(a-\sqrt{b})\\a\underbrace{\left(\left(a+\sqrt{b}\right)^n+\left(a-\sqrt{b}\right)^n\right)}_{\in 2\mathbb N}+\sqrt{b}\left(\left(a+\sqrt{b}\right)^n-\left(a-\sqrt{b}\right)^n\right)\end{equation}
\begin{equation}\sqrt{b}\left(\left(a+\sqrt{b}\right)^n-\left(a-\sqrt{b}\right)^n\right)=2b\sum_{i=0}^{n-1}\left(a+\sqrt{b}\right)^{n-1-i}\left(a-\sqrt{b}\right)^i\\=2b\sum_{i=0}^{\left\lceil\frac{n}{2}\right\rceil\\}\underbrace{\left(\left(a+\sqrt{n}\right)^{n-1-2i}+\left(a-\sqrt{n}\right)^{n-1-2i}\right)}_{\in 2\mathbb N}(a^2-b)^i\end{equation}
Therefore, $\left(a+\sqrt{b}\right)^{n+1}\left(a-\sqrt{b}\right)^{n+1}\in 2\mathbb N$ and so is $\left(a+\sqrt{b}\right)^n+\left(a-\sqrt{b}\right)^n$.
Is this correct?