For all interested, I think the answer is along the following lines:
Suppose $X \sim U[0,1],Y \sim U[0,k], k \geq 1$ and $X$ and $Y$ are independent and $Z=X+Y$.
Then, we have:
$$f_z(z) = \int_{\Omega(z)}f_x(u)f_y(z-u)$$
Depending on $z$, we have three different intervals over which to integrate:
$$
f_z(z)= \begin{cases}
\int_0^z \frac{1}{k}du = \frac{z}{k}, & \text{for } 0\leq z\leq 1\\
\int_0^1 \frac{1}{k}du = \frac{1}{k}, & \text{for } 1\leq z\leq k\\
\int_{z-k}^1 \frac{1}{k}du = \frac{1}{k} - \frac{z-k}{k} , & \text{for } k\leq z\leq k+1
\end{cases}
$$
The conditional pdf of $X$ given $Z$ is then given by:
$$
f_{x|z}(x|z) = \frac{f_{z|x}(z|x) f_x(x)}{f_z(z)}
$$
Thus, for the three intervals of $z$ we have:
$$
f_{x|z}(x|z)= \begin{cases}
\frac{1}{z}, & \text{for } 0\leq z\leq 1 \text{ and } 0\leq x \leq z\\
1, & \text{for } 1\leq z\leq k \text{ and } 0\leq x \leq 1\\
\frac{1}{k+1-z}, & \text{for } k\leq z\leq k+1 \text{ and } z-k\leq x \leq 1
\end{cases}
$$
The expected value $\mathbb{E}[X|Z]$ follows immediately and is given by
$$
\mathbb{E}(x|z)= \begin{cases}
\frac{\hat{z}}{2}, & \text{for } 0\leq z\leq 1\\
\frac{1}{2}, & \text{for } 1\leq z\leq k\\
\frac{1}{2} (1-k+\hat{z}), & \text{for } k\leq z\leq k+1
\end{cases}
$$
The extension for the general case follows if $X = a+(b-a) \hat{X}$, $Y = c+(b-a) \hat{Y}$, whereby the variables with a hat are the ones that I used previously.