I dont know how to solve this problem, please help! Thank you!
$$\sum_{n=1}^\infty \cos (n^3-n)$$
I dont know how to solve this problem, please help! Thank you!
$$\sum_{n=1}^\infty \cos (n^3-n)$$
It diverges. For a series $\sum_{n \in \mathbb N} a_n$, it is a necessary condition for convergence that $a_n$ is a zero sequence. Since
$$\lim_{n \to \infty} \cos(n^3 - n)$$
doesn't exist because
$$\limsup_{n \to \infty} \cos(n^3-n) = \limsup_{n \to \infty}\cos n = 1 \neq -1 = \liminf_{n \to \infty} \cos(n^3-n),$$
the series $\sum_{n=1}^\infty \cos(n^3-n)$ diverges.