0

I only know how to prove it use Fourier series. $$\ln(\sin{x})=-\ln2-\sum_{k=1}^{\infty}\frac{\cos(2kx)}{k}$$

Eeyore Ho
  • 734
  • 1
    Welcome to MSE. In order to get responses that suit your needs, please include in the body of the question your own thoughts, the effort made so far, and the specific difficulties that got you stuck. – Lee David Chung Lin Feb 09 '20 at 11:24

2 Answers2

0

Hint: $$ \log (\sin x) = \Re \log (\sin x) = \Re \log \left( {\frac{{e^{ix} - e^{ - ix} }}{{2i}}} \right) = - \log 2 + \Re \log (1 - e^{ - 2ix} ). $$

Gary
  • 31,845
0

$$\sum_{k=1}^\infty\dfrac{cos(2k x)}k$$

$=$ the real part of $$\sum_{k=1}^\infty\dfrac{(e^{2ix})^k}k=-\ln(1-e^{2ix})$$

Now $\ln(1-e^{2ix})$

$\equiv\ln(-1)+\ln(e^{ix})+\ln(e^{ix}-e^{-ix})\pmod{2\pi i}$

$\equiv i\pi+ix+\ln(2i\sin x)\pmod{2\pi i}$

$\equiv i\pi+ix+\ln2+\ln(\sin x)+\ln i$

whose real part is $\ln2+\ln(\sin x)$