This is probably a trivial exercise, but I'm having trouble with deriving a formal proof.
Let $X$ be a r.v. with values in $[0,\infty)$. Show that $$ \lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} \int_{X\leq \epsilon}X=0$$.
So far I've thought of reformulating this as$$ \mathbb{E}[\frac{X}{\epsilon_n}1_{[0,\epsilon_n]}]\rightarrow0$$ where $\epsilon_n \downarrow 0$.
I don't know how to proceed.