Prove that $x + \dfrac{2x^3}{3} + \cdots + \dfrac{2\cdot 4 \cdot \cdots 2nx^{2n+1}}{3\cdot 5 \cdot (2n+1)}+\cdots = \dfrac{\arcsin(x)}{\sqrt{1-x^2}}.$
Let $f(x) = x + \dfrac{2}3x^3 +\dfrac{8}{15}x^5 + \cdots + \dfrac{1}2n!\cdot\dfrac{n!}{(2n+1)!}(2x)^{2n+1}+\cdots.$ Then $xf(x) = x^2 + \dfrac{2}3 x^4 + \dfrac{8}{15}x^6 + \cdots + \dfrac{1}{4}n!\cdot \dfrac{n!}{(2n+1)!}(2x)^{2n+2}+\cdots.$
Also, $f'(x) = 1 + 2x^2 + \dfrac{8}3 x^4 + \cdots + n!\cdot \dfrac{n!}{(2n)!}(2x)^{2n}+\cdots$ and $(1-x^2)f'(x) =1+x^2 + \dfrac{2}3 x^4 + \cdots + [n!\cdot \dfrac{n!}{(2n)!}2^{2n}-(n-1)!\cdot \dfrac{(n-1)!}{(2n-2)!}2^{2n-2}]x^{2n}+\cdots\\ =1+x^2 + \dfrac{2}3 x^4 + \cdots + \dfrac{1}{4}\cdot(n-1)!\cdot \dfrac{(n-1)!}{(2n-1)!}\cdot(2x)^{2n}+ \cdots.$
Hence the derivative of $\sqrt{1-x^2}f(x)$ is $\sqrt{1-x^2}f'(x)-\dfrac{xf(x)}{\sqrt{1-x^2}} = \dfrac{1}{\sqrt{1-x^2}}((1-x^2)f'(x) - xf(x))=\dfrac{1}{\sqrt{1-x^2}}.$ Integrating, we see that $\sqrt{1-x^2}f(x) =\arcsin(x)+C.$ Plugging in the constant $C=0$ and dividing both sides by $\sqrt{1-x^2}$ gives the desired result.
Are there other approaches to solving this problem?