We have $S(p,m)=G(p,1-p,m)$ where, for $|b|<1$, $$G(a,b,m)=\sum_{k=0}^\infty\big(1-(1-ab^k)^m\big)=\sum_{n=1}^m(-1)^{n-1}\binom{m}{n}\frac{a^n}{1-b^n};$$ the latter is obtained after expanding $(1-ab^k)^m$ (using the binomial formula) and summing over $k$.
In particular, we easily get the following limit (cf. comments to the OP): $$\lim_{m\to\infty}\frac{S(\lambda/m,m)}{m}=\sum_{n=1}^\infty\frac{(-\lambda)^{n-1}}{n\cdot n!},$$ with the RHS related to the exponential integral function.
For asymptotics of $G(a,b,m)$ with fixed $a$ and $b$, one can apply the Nørlund–Rice approach (like I did here). For $0<b<1$ and $b\leqslant a\leqslant 1$, the result is $$G(a,b,m)=\frac{1}{2}-\frac{H_m+\log a}{\log b}+\frac{1}{\pi}\sum_{n=1}^\infty\frac{1}{n}\Im\left[\exp\left(-2n\pi i\frac{\log a}{\log b}\right)\prod_{k=1}^m\left(1+\frac{2n\pi i}{k\log b}\right)^{-1}\right],$$ where $H_m=\sum\limits_{k=1}^m\frac1k$; this can be extended using the obvious $G(a,b,m)=1-(1-a)^m+G(ab,b,m)$.