Denote the integral by $S(I_n)$
$$
I_{n+1}+I_n=S_{n+1}+S_n\\
I_{n+1}-I_n=S_{n+1}-S_n \\
\rightarrow
2 I_{n}= 2 S_{n}
$$
writing (Taylor expansion)
$$
S_{n}=I_{n-1}-\frac1{18}I_{n-1}^3+O(I_{n-1}^5)
$$
in the limit of big $n$ this leads to a "continuum approximation" (justification follows)
$$
18\,\partial_nI_n\sim-I^3_n+O(I_{n}^5) \quad (\star)
$$
or (the constant of Integration can be neglected in the limit $n\rightarrow\infty$)
$$
I_n \sim\frac{3}{\sqrt{n}} \quad (\star \star)
$$
Justification of $(\star)$:
We assume that $I_n$ is in the form of $(\star \star)$:
$$
I^{(k)}_n\ll I^{(m)}_n\quad (1)
$$
for $m<k$, so we can approximate the finite difference by a continious derivative.
$$
I_n-I_{n-1}\ll 1/\sqrt{n}\quad (2)
$$
so we can replace $I_{n-1}$ by $I_n$.
$$
I^{k}_n\ll I^{m}_n\quad (3)
$$
for $m<k$, so we can neglect higher order Terms in the Taylor approximation to $S(I_n)$.
Combining $(1)$ & $(2)$ & $(3)$ shows that our approximation $(\star)$ is consistent.