Let $f(x)$ denote a polynomial of degree at least 1 with integer coefficients and positive leading coefficient.
(i) Show that if $f(x_0)=m>0$, then $f(x)\equiv 0 \pmod{m}$ whenever $x\equiv x_0\pmod{m}$.
(ii) Show that there are infinitely many $x\in\mathbb{N}$ such that $f(x)$ is not prime.
Proof. (i) Since $f(x_0)=m$ we certainly have $f(x_0)\equiv 0\pmod m$, so it will be sufficient to show that $f(x)\equiv f(x_0)\pmod m$, if $x\equiv x_0\pmod m$. So, suppose $x\equiv x_0\pmod m$, then we know that, \begin{align} x^k&\equiv x_0^k\;\;\;\;\;\;\;\;\pmod m\\ 0&\equiv x_0^k-x^k\pmod m, \;\;\;\;\;\;\;(1) \end{align} where $k$ is a natural number. Now let, \begin{align*} f(x_0)&=a_nx_0^n+\cdot\cdot\cdot+a_1x_0+a_0=m\\ f(x)&=a_nx^n+\cdot\cdot\cdot+a_1x+a_0. \end{align*} Notice that, \begin{align*} f(x_0)-f(x)&=a_nx_0^n+\cdot\cdot\cdot+a_1x_0+a_0-(a_nx^n+\cdot\cdot\cdot+a_1x+a_0)\\ &=a_n(x_0^n-x^n)+\cdot\cdot\cdot+a_1(x_0-x)+a_0-a_0. \end{align*} From equation (1) we know that, \begin{align*} a_n(x_0^n-x^n)+\cdot\cdot\cdot+a_1(x_0-x)+a_0-a_0&\equiv a_n(0)+\cdot\cdot\cdot a_1(0)+0\pmod m\\ &\equiv 0 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\pmod m. \end{align*} Hence $f(x)\equiv f(x_0)\pmod m$ whenever $x\equiv x_0\pmod m$, as asserted.
(ii) There are infinitely natural numbers $x$ such that $x\equiv x_0\pmod m$, and from part (i) we know that if $x\equiv x_0 \pmod m$ then $f(x)\equiv 0\pmod m$, or in other words $m|f(x)$ whenever $x$ is congruent to $x_0$ modulo $m$. Since $m|f(x)$ it cannot be prime and hence there are infinitely many natural numbers $x$ such that $f(x)$ is not prime. Q.E.D.