I wasn't sure how to search for this question.
"Is this a ring? Is it unitary? Is it commutative?
$\left\{\frac{n+m\sqrt{d}}{2} : n, m \in \mathbb{Z}\ \text{both having the same parity}\right\}$, $d$ being a square - free integer (i.e. not divisible by the square of a prime)."
Is what I need to do show that this $\frac{n+m\sqrt{d}}{2}$ has all of the properties of a ring i.e. additive inverse, associativity etc? And if so, can someone help me with the additive inverse one? Because if they must always have the same parity, does that mean the additive inverse is $\frac{-n-m\sqrt{d}}{2}$?
Additive Associativity:
$n,m,i,j,a,b$ $\epsilon$ $\mathbb{Z}$
From left to right:
$\implies$ (($\frac{n+m\sqrt{d}}{2}$)+($\frac{i+j\sqrt{d}}{2}$))+($\frac{a+b\sqrt{d}}{2}$)
$\implies$ ($\frac{n+i}{2}$+$\frac{(m+j)\sqrt{d}}{2}$)+($\frac{a+b\sqrt{d}}{2}$)
$\implies$ $\frac{n+i+a}{2}$+$\frac{(m+j+b)\sqrt{d}}{2}$
From right to left:
$\impliedby$ ($\frac{n+m\sqrt{d}}{2}$)+(($\frac{i+j\sqrt{d}}{2}$)+($\frac{a+b\sqrt{d}}{2}$))
$\impliedby$ ($\frac{n+m\sqrt{d}}{2}$)+($\frac{i+a}{2}$+$\frac{(m+b)\sqrt{d}}{2}$)
$\impliedby$ $\frac{n+i+a}{2}$ $\frac{(n+m+b)\sqrt{d}}{2}$
Additive Commutativity:
$n,m,i,j$ $\epsilon$$\mathbb{Z}$
Left to right:
$\implies$ ($\frac{n+m\sqrt{d}}{2}$)+($\frac{i+j\sqrt{d}}{2}$)
$\implies$ $\frac{n+i}{2}$+$\frac{(m+j)\sqrt{d}}{2}$
Right to left:
$\impliedby$ ($\frac{i+j\sqrt{d}}{2}$)+($\frac{n+m\sqrt{d}}{2}$)
$\impliedby$ $\frac{i+n}{2}$+$\frac{(j+m)\sqrt{d}}{2}$
As $n,m,i,j$ are all intergers, the sum of these is just another integer. So these are equal also.
Additive Identity:
$n,m$ $\epsilon$ $\mathbb{Z}$ so we can let $n=m=0$. Putting this is gives:
$\frac{0+0\sqrt{d}}{2}$ $\implies$ 0
Additive Inverse
Let $V=\frac{-n+-m\sqrt{d}}{2}$ and $V'=\frac{n+m\sqrt{d}}{2}$
$V + V' \implies \frac{-n+-m\sqrt{d}}{2} + \frac{n+m\sqrt{d}}{2}$
$\implies$ $\frac{-n+n}{2} + \frac{(-m+m)\sqrt{d}}{2}$
$\implies$ $\frac{0}{2} + \frac{(0)\sqrt{d}}{2}$
$\implies$ $0 + 0$
$\implies$ $0$
This is as far as I've got so far. If anything isn't right please tell me. As I go through I'll update with the next axioms.
Here is the question as it is shown on my question sheet - I was only interested in part c. I have now finished solving this question thank you for everyone's advice and help.