1

Let $\alpha>1$. Is $\log^\alpha(x)\leq x$ when $x \rightarrow \infty$?

Jam
  • 10,325
Hector
  • 73

2 Answers2

2

Hint:

  • the logarithm is an increasing function

  • so consider $y=\log(x)$ and

  • whether $y^\alpha\leq e^y$ when $y \rightarrow \infty$ ?

Henry
  • 157,058
0

Yes. From the power series, $e^x > x^n/n!$.

Take logs and choose $n > \alpha+1$.

marty cohen
  • 107,799