Let $\alpha>1$. Is $\log^\alpha(x)\leq x$ when $x \rightarrow \infty$?
Asked
Active
Viewed 50 times
1
-
Relevant question: (Question 55468). – Jam Feb 02 '20 at 12:15
2 Answers
2
Hint:
the logarithm is an increasing function
so consider $y=\log(x)$ and
whether $y^\alpha\leq e^y$ when $y \rightarrow \infty$ ?

Henry
- 157,058
0
Yes. From the power series, $e^x > x^n/n!$.
Take logs and choose $n > \alpha+1$.

marty cohen
- 107,799